Arti Bhatia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1381715/publications.pdf Version: 2024-02-01

Δρτι Βηλτιλ

#	Article	IF	CITATIONS
1	Zero Tillage, Residue Retention and System-Intensification with Legumes for Enhanced Pearl Millet Productivity and Mineral Biofortification. Sustainability, 2022, 14, 543.	3.2	13
2	Phycoremediated N-fertilization approaches on reducing environmental impacts of agricultural nitrate leaching. Journal of Cleaner Production, 2022, 345, 131120.	9.3	11
3	Appraisal of probabilistic levels of toxic metals and health risk in cultivated and marketed vegetables in urban and peri-urban areas of Delhi, India. Environmental Toxicology and Pharmacology, 2022, 92, 103863.	4.0	6
4	Effect of elevated ozone and carbon dioxide interaction on growth, yield, nutrient content and wilt disease severity in chickpea grown in Northern India. Heliyon, 2021, 7, e06049.	3.2	17
5	Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	29
6	Methane utilizing plant growth-promoting microbial diversity analysis of flooded paddy ecosystem of India. World Journal of Microbiology and Biotechnology, 2021, 37, 56.	3.6	11
7	Interactive effect of elevated tropospheric ozone and carbon dioxide on radiation utilisation, growth and yield of chickpea (Cicer arietinum L.). International Journal of Biometeorology, 2021, 65, 1939-1952.	3.0	8
8	Mitigation of yield-scaled greenhouse gas emissions from irrigated rice through Azolla, Blue-green algae, and plant growth–promoting bacteria. Environmental Science and Pollution Research, 2021, 28, 51425-51439.	5.3	30
9	Inoculation of plant growth promoting-methane utilizing bacteria in different N-fertilizer regime influences methane emission and crop growth of flooded paddy. Science of the Total Environment, 2021, 775, 145826.	8.0	22
10	Net Ecosystem Exchange of Carbon Dioxide in Rice-Spring Wheat System of Northwestern Indo-Gangetic Plains. Land, 2021, 10, 701.	2.9	12
11	Nickel in terrestrial biota: Comprehensive review on contamination, toxicity, tolerance and its remediation approaches. Chemosphere, 2021, 275, 129996.	8.2	87
12	Wheat Cultivar Growth, Biochemical, Physiological and Yield Attributes Response to Combined Exposure to Tropospheric Ozone, Particulate Matter Deposition and Ascorbic Acid Application. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 938-945.	2.7	1
13	Experimental comparison of continuous and intermittent flooding of rice in relation to methane, nitrous oxide and ammonia emissions and the implications for nitrogen use efficiency and yield. Agriculture, Ecosystems and Environment, 2021, 319, 107571.	5.3	19
14	Plummeting global warming potential by chemicals interventions in irrigated rice: A lab to field assessment. Agriculture, Ecosystems and Environment, 2021, 319, 107545.	5.3	14
15	Enhancing nutrient translocation, yields and water productivity of wheat under rice–wheat cropping system through zinc nutrition and residual effect of green manuring. Journal of Plant Nutrition, 2020, 43, 2845-2856.	1.9	10
16	Screening of forty Indian Amaranthus hypochondriacus cultivars for tolerance and susceptibility to tropospheric ozone stress. Nucleus (India), 2020, 63, 281-291.	2.2	8
17	Raffinose and Hexose Sugar Content During Germination Are Related to Infrared Thermal Fingerprints of Primed Onion (Allium cepa L.) Seeds. Frontiers in Plant Science, 2020, 11, 579037.	3.6	6
18	Global warming impacts of nitrogen use in agriculture: an assessment for India since 1960. Carbon Management, 2020, 11, 291-301.	2.4	29

Arti Bhatia

#	Article	IF	CITATIONS
19	Ensemble modelling of carbon fluxes in grasslands and croplands. Field Crops Research, 2020, 252, 107791.	5.1	50
20	Nitrous oxide emission and mitigation from maize–wheat rotation in the upper Indo-Gangetic Plains. Carbon Management, 2019, 10, 489-499.	2.4	24
21	The effects of elevated CO2 and elevated O3 exposure on plant growth, yield and quality of grains of two wheat cultivars grown in north India. Heliyon, 2019, 5, e02317.	3.2	26
22	Mitigation of greenhouse gas intensity by supplementing with Azolla and moderating the dose of nitrogen fertilizer. Biocatalysis and Agricultural Biotechnology, 2019, 20, 101266.	3.1	46
23	Effect of elevated temperature on soil hydrothermal regimes and growth of wheat crop. Environmental Monitoring and Assessment, 2018, 190, 217.	2.7	14
24	Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N ₂ O emissions. Global Change Biology, 2018, 24, e603-e616.	9.5	104
25	Effect of elevated carbon dioxide on soil hydrothermal regimes and growth of maize crop (Zea mays) Tj ETQq1 661.	l 0.784314 2.7	rgBT /Overic 4
26	Aggregate-associated N and global warming potential of conservation agriculture-based cropping of maize-wheat system in the north-western Indo-Gangetic Plains. Soil and Tillage Research, 2018, 182, 66-77.	5.6	33
27	Chemical and Natural Plant Extract in Ameliorating Negative Impact of Tropospheric Ozone on Wheat Crop: A Case Study in a Part of Semiarid North West India. Aerosol and Air Quality Research, 2016, 16, 1742-1756.	2.1	14
28	Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors. Science of the Total Environment, 2016, 572, 874-896.	8.0	210
29	Impact of Nitrogen Fertilizers on Methane Emissions from Flooded Rice. Current World Environment Journal, 2016, 11, 846-850.	0.5	4
30	Heavy Metal Contamination of Soil, Irrigation Water and Vegetables in Periâ€Urban Agricultural Areas and Markets of Delhi. Water Environment Research, 2015, 87, 2027-2034.	2.7	61
31	Impact of Elevated Ozone on Growth, Yield and Nutritional Quality of Two Wheat Species in Northern India. Aerosol and Air Quality Research, 2015, 15, 329-340.	2.1	26
32	Mitigation of greenhouse gas emission with system of rice intensification in the Indo-Gangetic Plains. Paddy and Water Environment, 2014, 12, 355-363.	1.8	76
33	Methane and nitrous oxide emissions from Indian rice paddies, agricultural soils and crop residue burning. , 2013, 3, 196-211.		57
34	Synergistic action of tropospheric ozone and carbon dioxide on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Environmental Monitoring and Assessment, 2013, 185, 6517-6529.	2.7	31
35	Pattern of methane emission and water productivity under different methods of rice crop establishment. Paddy and Water Environment, 2013, 11, 321-329.	1.8	61
36	Greenhouse gas emission from rice―and wheatâ€growing areas in India: spatial analysis and upscaling. , 2012, 2, 115-125.		41

Arti Bhatia

#	Article	IF	CITATIONS
37	Greenhouse gas mitigation in rice–wheat system with leaf color chart-based urea application. Environmental Monitoring and Assessment, 2012, 184, 3095-3107.	2.7	71
38	Recycling of rice straw to improve wheat yield and soil fertility and reduce atmospheric pollution. Paddy and Water Environment, 2006, 4, 111-117.	1.8	118
39	Mitigating nitrous oxide and methane emissions from soil in rice–wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors. Chemosphere, 2005, 58, 141-147.	8.2	156
40	Methane emission from rice–wheat cropping system in the Indo-Gangetic plain in relation to irrigation, farmyard manure and dicyandiamide application. Agriculture, Ecosystems and Environment, 2003, 97, 309-316.	5.3	83
41	Emission of nitrous oxide from rice-wheat systems of Indo-Gangetic plains of India. Environmental Monitoring and Assessment, 2002, 77, 163-178.	2.7	141