List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1381340/publications.pdf Version: 2024-02-01

		66250	29333
115	11,865	44	108
papers	citations	h-index	g-index
117	117	117	15835
all docs	docs citations	times ranked	citing authors

ΙΙΔΝ ΙΙΔΝΟ

#	Article	IF	CITATIONS
1	Minimizing Carbon Content with Threeâ€inâ€One Functionalized Nano Conductive Ceramics: Toward More Practical and Safer S Cathodes of Liâ€S Cells. Energy and Environmental Materials, 2023, 6, .	7.3	7
2	Create Rich Oxygen Defects of Unique Tubular Hierarchical Molybdenum Dioxide to Modulate Electron Transfer Rate for Superior Highâ€Energy Metalâ€Ion Hybrid Capacitor. Energy and Environmental Materials, 2023, 6, .	7.3	9
3	Continuous assessment of longitudinal temperature force on ballasted track using rail vibration frequency. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2022, 236, 212-219.	1.3	2
4	Elevating kinetics of passivated Fe anodes with NH4Cl regulator: Toward low-cost, long-cyclic and green cathode-free Fe-ion aqueous batteries. Nano Research, 2022, 15, 3187-3194.	5.8	7
5	High S Filling and Binder-Free Cathodes Enabled by Thick Arrayed Nanoframeworks and Subtle Interfacial Engineering. ACS Applied Energy Materials, 2022, 5, 1313-1321.	2.5	3
6	Iron anodeâ€based aqueous electrochemical energy storage devices: Recent advances and future perspectives. , 2022, 1, 116-139.		73
7	Mediating iodine cathodes with robust directional halogen bond interactions for highly stable rechargeable Zn-12 batteries. Chemical Engineering Journal, 2022, 439, 135676.	6.6	28
8	Thermotolerant and Li ₂ S _{<i>n</i>} -trapped/converted separators enabled by NiFe ₂ O ₄ quantum dots/g-C ₃ N ₄ nanofiber interlayers: toward more practical Li–S batteries. Materials Chemistry Frontiers, 2022, 6, 2034-2041.	3.2	5
9	Can domestic wastes-evolved Fe2N@Carbon hybrids serve as competitive anodes for sustainable Li/Na storage applications?. Materials Research Bulletin, 2021, 134, 111088.	2.7	8
10	Low-operating temperature quasi-solid-state potassium-ion battery based on commercial materials. Journal of Colloid and Interface Science, 2021, 582, 932-939.	5.0	20
11	Encapsulating Sulfides into Tridymite/Carbon Reactors Enables Stable Sodium Ion Conversion/Alloying Anode with High Initial Coulombic Efficiency Over 89%. Advanced Functional Materials, 2021, 31, 2009598.	7.8	16
12	Nickel Hollow Spheres Concatenated by Nitrogenâ€Doped Carbon Fibers for Enhancing Electrochemical Kinetics of Sodium–Sulfur Batteries. Advanced Science, 2020, 7, 1902617.	5.6	70
13	Highly efficient inverted perovskite solar cells incorporating P3CT-Rb as a hole transport layer to achieve a large open circuit voltage of 1.144 V. Nanoscale, 2020, 12, 3686-3691.	2.8	35
14	MXene-derived three-dimensional carbon nanotube network encapsulate CoS ₂ nanoparticles as an anode material for solid-state sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 3018-3026.	5.2	51
15	An MXene-based aerogel with cobalt nanoparticles as an efficient sulfur host for room-temperature Na–S batteries. Inorganic Chemistry Frontiers, 2020, 7, 4396-4403.	3.0	33
16	Unearth the understanding of interfacial engineering techniques on nano sulfur cathodes for steady Li–S cell systems. Journal of Materials Chemistry A, 2020, 8, 11976-11985.	5.2	20
17	Oxygen vacancies enhance supercapacitive performance of CuCo2O4 in high-energy-density asymmetric supercapacitors. Journal of Power Sources, 2020, 458, 228005.	4.0	96
18	Curtailing Carbon Usage with Addition of Functionalized NiFe2O4 Quantum Dots: Toward More Practical S Cathodes for Li–S Cells. Nano-Micro Letters, 2020, 12, 145.	14.4	27

#	Article	IF	CITATIONS
19	Fast-response/stable Ni–Bi cells achieved using hollowed-out Bi@carbon nanospheres: a preferred electricity storage choice to couple with clean energy harvesting. Materials Chemistry Frontiers, 2020, 4, 1249-1255.	3.2	15
20	Incorporating Fe into Bismuthic Anode Systems: A Smart "Merits Combination/Complementation― Route to Build Better Ni–Bi Batteries. ACS Applied Materials & Interfaces, 2020, 12, 5876-5884.	4.0	7
21	Highly Puffed Co ₉ S ₈ /Carbon Nanofibers: A Functionalized S Carrier for Superior Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 26798-26806.	4.0	55
22	Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells. Journal of Colloid and Interface Science, 2019, 553, 524-529.	5.0	32
23	Phase Transition Triggers Explosion-like Puffing Process to Make Popcorn-Inspired All-Conductive Anodes for Superb Aqueous Rechargeable Batteries. ACS Applied Materials & Interfaces, 2019, 11, 42365-42374.	4.0	6
24	Configuring Optimal FeS ₂ @Carbon Nanoreactor Anodes: Toward Insights into Pyrite Phase Change/Failure Mechanism in Rechargeable Ni–Fe Cells. ACS Applied Materials & Interfaces, 2019, 11, 42032-42041.	4.0	15
25	Smart Colloid-Assisted Technique Prompts the Evolution of Bamboo Wastes into Nanometal-Inlaid Carbon Microfibers for Sustainable Ni–Fe Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 17919-17928.	3.2	13
26	Mass Production of Metallic Fe@Carbon Nanoparticles with Plastic and Rusty Wastes for High-Capacity Anodes of Ni–Fe Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 10995-11003.	3.2	23
27	Na 3 TiV(PO 4) 3 /C nanoparticles for sodiumâ€ion symmetrical and full batteries. Energy Storage, 2019, 1, e74.	2.3	8
28	TiOxNy nanoparticles/C composites derived from MXene as anode material for potassium-ion batteries. Chemical Engineering Journal, 2019, 369, 828-833.	6.6	68
29	Electrode engineering starting from live biomass: a â€~smart' way to construct smart pregnant hybrids for sustainable charge storage devices. Materials Chemistry Frontiers, 2019, 3, 796-805.	3.2	1
30	Facile fabrication of 3D hierarchically honeycomb-like Na7Fe4.5(P2O7)4@C nanocomposites with enhanced sodium storage performance. Journal of Alloys and Compounds, 2019, 771, 297-301.	2.8	9
31	High-Rate and Long-Life Sodium-Ion Batteries Based on Sponge-like Three-Dimensional Porous Na-Rich Ferric Pyrophosphate Cathode Material. ACS Applied Materials & Interfaces, 2019, 11, 5107-5113.	4.0	30
32	Smart Merit Combination of Sulfur, Selenium and Electrode Engineering To Build Better Sustainable Li-Storage Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 802-809.	3.2	13
33	Exploration of Mn0.5Ti2(PO4)3@rgo composite as anode electrode for Na-ion battery. Journal of Materials Science: Materials in Electronics, 2018, 29, 4250-4255.	1.1	9
34	Improving the Performance of Hard Carbon//Na ₃ V ₂ O ₂ (PO ₄) ₂ F Sodium-Ion Full Cells by Utilizing the Adsorption Process of Hard Carbon. ACS Applied Materials & Interfaces, 2018, 10, 16581-16587.	4.0	37
35	Smart Magnetic Interaction Promotes Efficient and Green Production of High-Quality Fe ₃ O ₄ @Carbon Nanoactives for Sustainable Aqueous Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 757-765.	3.2	19
36	Sodium-Rich Ferric Pyrophosphate Cathode for Stationary Room-Temperature Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 502-508.	4.0	41

#	Article	IF	CITATIONS
37	One-pot growth of Co(OH) ₂ nanowire bundle arrays on <i>in situ</i> functionalized carbon cloth for robust flexible supercapacitor electrodes. Dalton Transactions, 2018, 47, 15416-15423.	1.6	20
38	Graphitic, Porous, and Multiheteroatom Codoped Carbon Microtubes Made from Hair Waste: A Superb and Sustained Anode Substitute for Li-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 13662-13669.	3.2	17
39	Building better rechargeable Zn–Mn batteries with a highly active Mn ₃ O ₄ /carbon nanowire cathode and neutral Na ₂ SO ₄ /MnSO ₄ electrolyte. Chemical Communications, 2018, 54, 10835-10838.	2.2	23
40	Putting Nanoarmors on Yolk–Shell Si@C Nanoparticles: A Reliable Engineering Way To Build Better Si-Based Anodes for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 24157-24163.	4.0	46
41	One-Dimensional Integrated MnS@Carbon Nanoreactors Hybrid: An Alternative Anode for Full-Cell Li-Ion and Na-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 27911-27919.	4.0	53
42	In Situ Engineering Toward Core Regions: A Smart Way to Make Applicable FeF ₃ @Carbon Nanoreactor Cathodes for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 17992-18000.	4.0	40
43	Efficient Production of Coaxial Core–Shell MnO@Carbon Nanopipes for Sustainable Electrochemical Energy Storage Applications. ACS Sustainable Chemistry and Engineering, 2017, 5, 6288-6296.	3.2	31
44	Uniform α-Ni(OH)2 hollow spheres constructed from ultrathin nanosheets as efficient polysulfide mediator for long-term lithium-sulfur batteries. Energy Storage Materials, 2017, 8, 202-208.	9.5	93
45	Uniform implantation of CNTs on total activated carbon surfaces: a smart engineering protocol for commercial supercapacitor applications. Nanotechnology, 2017, 28, 145402.	1.3	9
46	Confined selenium within metal-organic frameworks derived porous carbon microcubes as cathode for rechargeable lithium–selenium batteries. Journal of Power Sources, 2017, 341, 53-59.	4.0	56
47	Metallic Fe nanoparticles trapped in self-adapting nanoreactors: a novel high-capacity anode for aqueous Ni–Fe batteries. Chemical Communications, 2017, 53, 12661-12664.	2.2	28
48	Three-dimensional hierarchical porous tubular carbon as a host matrix for long-term lithium-selenium batteries. Journal of Power Sources, 2017, 367, 17-23.	4.0	28
49	Rib-like hierarchical porous carbon as reservoir for long-life and high-rate Li-Te batteries. Electrochimica Acta, 2017, 250, 10-15.	2.6	29
50	Evolution of Useless Iron Rust into Uniform α-Fe ₂ O ₃ Nanospheres: A Smart Way to Make Sustainable Anodes for Hybrid Ni–Fe Cell Devices. ACS Sustainable Chemistry and Engineering, 2017, 5, 269-276.	3.2	38
51	In Situ Packaging FeF _{<i>x</i>} into Sack-like Carbon Nanoreactors: A Smart Way To Make Soluble Fluorides Applicable to Aqueous Batteries. ACS Applied Materials & Interfaces, 2016, 8, 3874-3882.	4.0	22
52	Evaluation of O3-type Na0.8Ni0.6Sb0.4O2 as cathode materials for sodium-ion batteries. Journal of Solid State Electrochemistry, 2016, 20, 2331-2335.	1.2	9
53	Aspergillus flavus Conidia-derived Carbon/Sulfur Composite as a Cathode Material for High Performance Lithium–Sulfur Battery. Scientific Reports, 2016, 6, 18739.	1.6	22
54	Selenium Embedded in Metal–Organic Framework Derived Hollow Hierarchical Porous Carbon Spheres for Advanced Lithium–Selenium Batteries. ACS Applied Materials & Interfaces, 2016, 8, 16063-16070.	4.0	106

#	Article	IF	CITATIONS
55	FeF ₃ @Thin Nickel Ammine Nitrate Matrix: Smart Configurations and Applications as Superior Cathodes for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 16240-16247.	4.0	29
56	Facile and creative design of hierarchical vanadium oxides@graphene nanosheet patterns. RSC Advances, 2016, 6, 13323-13327.	1.7	6
57	Supramolecular Polymerization Promoted In Situ Fabrication of Nitrogenâ€Doped Porous Graphene Sheets as Anode Materials for Liâ€ion Batteries. Advanced Energy Materials, 2015, 5, 1500559.	10.2	133
58	Facile Synthesis of Novel Networked Ultralong Cobalt Sulfide Nanotubes and Its Application in Supercapacitors. ACS Applied Materials & amp; Interfaces, 2015, 7, 25568-25573.	4.0	105
59	Surfactant-assisted encapsulation of uniform SnO ₂ nanoparticles in graphene layers for high-performance Li-storage. 2D Materials, 2015, 2, 014005.	2.0	18
60	High performance mesoporous C@Se composite cathodes derived from Ni-based MOFs for Li–Se batteries. RSC Advances, 2015, 5, 84038-84043.	1.7	36
61	Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium–sulfur cells. Nature Communications, 2015, 6, 8622.	5.8	259
62	A selenium-confined porous carbon cathode from silk cocoons for Li–Se battery applications. RSC Advances, 2015, 5, 96146-96150.	1.7	24
63	A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film. Nano Letters, 2014, 14, 7180-7187.	4.5	346
64	Chemically engineered graphene oxide as high performance cathode materials for Li-ion batteries. Carbon, 2014, 76, 148-154.	5.4	80
65	Building smart TiO ₂ nanorod networks in/on the film of P25 nanoparticles for high-efficiency dye sensitized solar cells. RSC Advances, 2014, 4, 12944-12949.	1.7	22
66	Encapsulation of nanoscale metal oxides into an ultra-thin Ni matrix for superior Li-ion batteries: a versatile strategy. Nanoscale, 2014, 6, 12990-13000.	2.8	21
67	Redox-crosslinked graphene networks with enhanced electrochemical capacitance. Journal of Materials Chemistry A, 2014, 2, 12924.	5.2	44
68	3D Carbon/Cobaltâ€Nickel Mixedâ€Oxide Hybrid Nanostructured Arrays for Asymmetric Supercapacitors. Small, 2014, 10, 2937-2945.	5.2	146
69	Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for Highâ€Performance Liâ€Ion Batteries and Oxygen Reduction Reaction. Advanced Materials, 2014, 26, 6186-6192.	11.1	598
70	Nitrogen-doped carbon-based dots prepared by dehydrating EDTA with hot sulfuric acid and their electrocatalysis for oxygen reduction reaction. RSC Advances, 2014, 4, 32791-32795.	1.7	26
71	Evolution of disposable bamboo chopsticks into uniform carbon fibers: a smart strategy to fabricate sustainable anodes for Li-ion batteries. Energy and Environmental Science, 2014, 7, 2670-2679.	15.6	271
72	Diffusion-controlled evolution of core–shell nanowire arrays into integrated hybrid nanotube arrays for Li-ion batteries. Nanoscale, 2013, 5, 8105.	2.8	52

#	Article	IF	CITATIONS
73	A novel hierarchical ZnO disordered/ordered bilayer nanostructured film for dye sensitized solar cells. Journal of Alloys and Compounds, 2013, 581, 610-615.	2.8	13
74	Carbon-assisted synthesis of mesoporous SnO2 nanomaterial as highly sensitive ethanol gas sensor. Sensors and Actuators B: Chemical, 2013, 183, 526-534.	4.0	40
75	Three-Dimensional Ni/SnO _{<i>x</i>} /C Hybrid Nanostructured Arrays for Lithium-Ion Microbattery Anodes with Enhanced Areal Capacity. ACS Applied Materials & Interfaces, 2013, 5, 2634-2640.	4.0	35
76	Self-assembly of well-ordered whisker-like manganese oxide arrays on carbon fiber paper and its application as electrode material for supercapacitors. Journal of Materials Chemistry, 2012, 22, 8634.	6.7	249
77	Preparation and gas-sensing property of ultra-fine NiO/SnO2 nano-particles. RSC Advances, 2012, 2, 10324.	1.7	28
78	Controlled growth of SnO2@Fe2O3 double-sided nanocombs as anodes for lithium-ion batteries. Nanoscale, 2012, 4, 4459.	2.8	60
79	Recent Advances in Metal Oxideâ€based Electrode Architecture Design for Electrochemical Energy Storage. Advanced Materials, 2012, 24, 5166-5180.	11.1	2,251
80	Mixed Ni–Cu-oxide nanowire array on conductive substrate and its application as enzyme-free glucose sensor. Analytical Methods, 2012, 4, 4003.	1.3	43
81	Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy and Environmental Science, 2012, 5, 6559.	15.6	421
82	Three-dimensional tubular arrays of MnO ₂ –NiO nanoflakes with high areal pseudocapacitance. Journal of Materials Chemistry, 2012, 22, 2419-2426.	6.7	408
83	A novel evolution strategy to fabricate a 3D hierarchical interconnected core–shell Ni/MnO2 hybrid for Li-ion batteries. Chemical Communications, 2012, 48, 7471.	2.2	37
84	Synthesis of ZnO@TiO2 core–shell long nanowire arrays and their application on dye-sensitized solar cells. Journal of Solid State Chemistry, 2012, 190, 303-308.	1.4	40
85	Co–Fe Mixed Oxide Nanoneedle-on-Nanowall Arrays on Conductive Substrate: Synthesis and Field Emission. Science of Advanced Materials, 2012, 4, 346-350.	0.1	1
86	Tailored Ni–Cu alloy hierarchical porous nanowire as a potential efficient catalyst for DMFCs. Catalysis Science and Technology, 2011, 1, 1406.	2.1	56
87	Co–Fe layered double hydroxide nanowall array grown from an alloy substrate and its calcined product as a composite anode for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 15969.	6.7	75
88	CNT/Ni hybrid nanostructured arrays: synthesis and application as high-performance electrode materials for pseudocapacitors. Energy and Environmental Science, 2011, 4, 5000.	15.6	125
89	CNT-network modified Ni nanostructured arrays for high performance non-enzymatic glucose sensors. RSC Advances, 2011, 1, 1020.	1.7	80
90	UV-resistant superhydrophobic BiOCl nanoflake film by a room-temperature hydrolysis process. Dalton Transactions, 2011, 40, 6632.	1.6	46

#	Article	IF	CITATIONS
91	Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale, 2011, 3, 45-58.	2.8	328
92	Large-Scale Uniform α-Co(OH) ₂ Long Nanowire Arrays Grown on Graphite as Pseudocapacitor Electrodes. ACS Applied Materials & Interfaces, 2011, 3, 99-103.	4.0	160
93	Two novel hierarchical homogeneous nanoarchitectures of TiO2 nanorods branched and P25-coated TiO2 nanotube arrays and their photocurrent performances. Nanoscale Research Letters, 2011, 6, 91.	3.1	34
94	Epitaxial Growth of Branched αâ€Fe ₂ O ₃ /SnO ₂ Nanoâ€Heterostructures with Improved Lithiumâ€Ion Battery Performance. Advanced Functional Materials, 2011, 21, 2439-2445.	7.8	439
95	Co ₃ O ₄ Nanowire@MnO ₂ Ultrathin Nanosheet Core/Shell Arrays: A New Class of Highâ€Performance Pseudocapacitive Materials. Advanced Materials, 2011, 23, 2076-2081.	11.1	1,250
96	Energy Storage: Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High-Performance Pseudocapacitive Materials (Adv. Mater. 18/2011). Advanced Materials, 2011, 23, 2075-2075.	11,1	25
97	A general sonochemical approach to rapid synthesis of 1D single-crystalline MSn(OH)6 (M = Ba, Ca, Sr) nanostructures. Applied Surface Science, 2011, 257, 9008-9013.	3.1	8
98	Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application. Journal of Solid State Chemistry, 2011, 184, 578-583.	1.4	103
99	Cu@C composite nanotube array and its application as an enzyme-free glucose sensor. Nanotechnology, 2011, 22, 375303.	1.3	8
100	Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes. Journal of Solid State Chemistry, 2010, 183, 662-667.	1.4	69
101	Carbon-Coated SnO2 Nanorod Array for Lithium-Ion Battery Anode Material. Nanoscale Research Letters, 2010, 5, 649-653.	3.1	48
102	Copper nanowall array grown on bulk Fe–Co–Ni alloy substrate at room temperature as lithium-ion battery current collector. Thin Solid Films, 2010, 518, 6876-6882.	0.8	5
103	Ni/Al layered double hydroxide nanosheet film grown directly on Ti substrate and its application for a nonenzymatic glucose sensor. Sensors and Actuators B: Chemical, 2010, 147, 241-247.	4.0	103
104	C@ZnO nanorod array-based hydrazine electrochemical sensor with improved sensitivity and stability. Dalton Transactions, 2010, 39, 8693.	1.6	124
105	Direct Synthesis of CoO Porous Nanowire Arrays on Ti Substrate and Their Application as Lithium-Ion Battery Electrodes. Journal of Physical Chemistry C, 2010, 114, 929-932.	1.5	168
106	General Synthesis of Large-Scale Arrays of One-Dimensional Nanostructured Co ₃ O ₄ Directly on Heterogeneous Substrates. Crystal Growth and Design, 2010, 10, 70-75.	1.4	216
107	Rapid Synthesis of Single-Crystalline SrSn(OH) ₆ Nanowires and the Performance of SrSnO ₃ Nanorods Used as Anode Materials for Li-Ion Battery. Journal of Physical Chemistry C, 2010, 114, 947-952.	1.5	55
108	Hydrothermal synthesis of novel Zn2SnO4 octahedron microstructures assembled with hexagon nanoplates. Journal of Alloys and Compounds, 2010, 503, L21-L25.	2.8	43

#	Article	IF	CITATIONS
109	Density- and adhesion-controlled ZnO nanorod arrays on the ITO flexible substrates and their electrochromic performance. Journal of Alloys and Compounds, 2010, 507, 261-266.	2.8	34
110	Iron Oxide-Based Nanotube Arrays Derived from Sacrificial Template-Accelerated Hydrolysis: Large-Area Design and Reversible Lithium Storage. Chemistry of Materials, 2010, 22, 212-217.	3.2	311
111	A General Solution Synthesis Route to ZnO-Based Nanorod Arrays on Ceramic/Silicon/Quartz Glass/Metal Substrates. Science of Advanced Materials, 2010, 2, 396-401.	0.1	25
112	Carbon/ZnO Nanorod Array Electrode with Significantly Improved Lithium Storage Capability. Journal of Physical Chemistry C, 2009, 113, 5336-5339.	1.5	202
113	Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. Journal of Materials Chemistry, 2009, 19, 1859.	6.7	273
114	High surface area ZnO–carbon composite tubular arrays based on the Kirkendall effect and in situ Zn evaporation. Chemical Communications, 2009, , 4548.	2.2	18
115	Which Layered Cathode Suits More for Nanosilica Protection, Ni-Rich LiNi0.8Co0.1Mn0.1O2 or Li-Rich Li1.2Mn0.54Co0.13Ni0.13O2?. ACS Applied Energy Materials, 0, , .	2.5	3