
Marta Magatti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1381246/publications.pdf Version: 2024-02-01

Μάρτα Μαςάττι

#	Article	IF	CITATIONS
1	Concise Review: Isolation and Characterization of Cells from Human Term Placenta: Outcome of the First International Workshop on Placenta Derived Stem Cells. Stem Cells, 2008, 26, 300-311.	3.2	921
2	Human Amnion Mesenchyme Harbors Cells with Allogeneic T-Cell Suppression and Stimulation Capabilities. Stem Cells, 2008, 26, 182-192.	3.2	192
3	Amniotic Mesenchymal Tissue Cells Inhibit Dendritic Cell Differentiation of Peripheral Blood and Amnion Resident Monocytes. Cell Transplantation, 2009, 18, 899-914.	2.5	125
4	The Long Path of Human Placenta, and Its Derivatives, in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2015, 3, 162.	4.1	122
5	Characterization of the Conditioned Medium from Amniotic Membrane Cells: Prostaglandins as Key Effectors of Its Immunomodulatory Activity. PLoS ONE, 2012, 7, e46956.	2.5	110
6	Characterization and potential applications of progenitor-like cells isolated from horse amniotic membrane. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 622-635.	2.7	92
7	Human amnion favours tissue repair by inducing the M1-to-M2 switch and enhancing M2 macrophage features. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2895-2911.	2.7	90
8	Human Amniotic Membrane-Derived Mesenchymal and Epithelial Cells Exert Different Effects on Monocyte-Derived Dendritic Cell Differentiation and Function. Cell Transplantation, 2015, 24, 1733-1752.	2.5	89
9	The Immunomodulatory Properties of Amniotic Cells. Cell Transplantation, 2018, 27, 31-44.	2.5	85
10	Therapeutic Effect of Human Amniotic Membrane–Derived Cells on Experimental Arthritis and Other Inflammatory Disorders. Arthritis and Rheumatology, 2014, 66, 327-339.	5.6	78
11	Amniotic membraneâ€derived cells inhibit proliferation of cancer cell lines by inducing cell cycle arrest. Journal of Cellular and Molecular Medicine, 2012, 16, 2208-2218.	3.6	72
12	Is Immune Modulation the Mechanism Underlying the Beneficial Effects of Amniotic Cells and Their Derivatives in Regenerative Medicine?. Cell Transplantation, 2017, 26, 531-539.	2.5	66
13	Conditioned medium from amniotic membrane-derived cells prevents lung fibrosis and preserves blood gas exchanges in bleomycin-injured mice—specificity of the effects and insights into possible mechanisms. Cytotherapy, 2014, 16, 17-32.	0.7	60
14	Mesenchymal Stromal Cells from Fetal and Maternal Placenta Possess Key Similarities and Differences: Potential Implications for Their Applications in Regenerative Medicine. Cells, 2020, 9, 127.	4.1	55
15	Conditioned medium from amniotic cells protects striatal degeneration and ameliorates motor deficits in the R6/2 mouse model of Huntington's disease. Journal of Cellular and Molecular Medicine, 2019, 23, 1581-1592.	3.6	45
16	Amniotic mesenchymal cells from preâ€eclamptic placentae maintain immunomodulatory features as healthy controls. Journal of Cellular and Molecular Medicine, 2016, 20, 157-169.	3.6	41
17	Amniotic MSCs reduce pulmonary fibrosis by hampering lung B-cell recruitment, retention, and maturation. Stem Cells Translational Medicine, 2020, 9, 1023-1035.	3.3	41
18	Proliferation and survival of human amniotic epithelial cells during their hepatic differentiation. PLoS ONE, 2018, 13, e0191489.	2.5	37

MARTA MAGATTI

#	Article	IF	CITATIONS
19	Isolation, Culture, and Phenotypic Characterization of Mesenchymal Stromal Cells from the Amniotic Membrane of the Human Term Placenta. Methods in Molecular Biology, 2016, 1416, 233-244.	0.9	33
20	B Lymphocytes as Targets of the Immunomodulatory Properties of Human Amniotic Mesenchymal Stromal Cells. Frontiers in Immunology, 2020, 11, 1156.	4.8	33
21	Effect of human amniotic epithelial cells on proâ€fibrogenic resident hepatic cells in a rat model of liver fibrosis. Journal of Cellular and Molecular Medicine, 2018, 22, 1202-1213.	3.6	28
22	The Multifaceted Roles of MSCs in the Tumor Microenvironment: Interactions With Immune Cells and Exploitation for Therapy. Frontiers in Cell and Developmental Biology, 2020, 8, 447.	3.7	27
23	Perinatal Mesenchymal Stromal Cells and Their Possible Contribution to Fetal-Maternal Tolerance. Cells, 2019, 8, 1401.	4.1	19
24	The dichotomy of placenta-derived cells in cancer growth. Placenta, 2017, 59, 154-162.	1.5	15
25	CM from intact hAM: an easily obtained product with relevant implications for translation in regenerative medicine. Stem Cell Research and Therapy, 2021, 12, 540.	5.5	15
26	The Cells and Extracellular Matrix of Human Amniotic Membrane Hinder the Growth and Invasive Potential of Bladder Urothelial Cancer Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 554530.	4.1	11
27	Priming with inflammatory cytokines is not a prerequisite to increase immune-suppressive effects and responsiveness of equine amniotic mesenchymal stromal cells. Stem Cell Research and Therapy, 2020, 11, 99.	5.5	10
28	The Role of B Cells in PE Pathophysiology: A Potential Target for Perinatal Cell-Based Therapy?. International Journal of Molecular Sciences, 2021, 22, 3405.	4.1	6
29	Human Amniotic Mesenchymal Stromal Cells Support the ex Vivo Expansion of Cord Blood Hematopoietic Stem Cells. Stem Cells Translational Medicine, 2021, 10, 1516-1529.	3.3	5

30 Epithelial and Mesenchymal Stromal Cells From the Amniotic Membrane. , 2018, , 147-155.

1