Kannan M Krishnan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1381240/publications.pdf

Version: 2024-02-01

25 papers 3,795 citations

257450 24 h-index 25 g-index

26 all docs

26 docs citations

times ranked

26

4882 citing authors

#	Article	IF	Citations
1	Nonequilibrium Dynamics of Magnetic Nanoparticles with Applications in Biomedicine. Advanced Materials, 2021, 33, e1904131.	21.0	90
2	A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging. American Journal of Neuroradiology, 2019, 40, 206-212.	2.4	133
3	Observing the colloidal stability of iron oxide nanoparticles <i>in situ</i> . Nanoscale, 2019, 11, 13098-13107.	5 . 6	30
4	Discriminating nanoparticle core size using multi-contrast MPI. Physics in Medicine and Biology, 2019, 64, 074001.	3.0	19
5	Intracellular dynamics of superparamagnetic iron oxide nanoparticles for magnetic particle imaging. Nanoscale, 2019, 11, 7771-7780.	5.6	39
6	Magnetic Particle Imaging: A Novel in Vivo Imaging Platform for Cancer Detection. Nano Letters, 2017, 17, 1648-1654.	9.1	260
7	First <i>in vivo</i> traumatic brain injury imaging via magnetic particle imaging. Physics in Medicine and Biology, 2017, 62, 3501-3509.	3.0	78
8	Tomographic magnetic particle imaging of cancer targeted nanoparticles. Nanoscale, 2017, 9, 18723-18730.	5.6	107
9	Towards Picogram Detection of Superparamagnetic Iron-Oxide Particles Using a Gradiometric Receive Coil. Scientific Reports, 2017, 7, 6872.	3.3	95
10	Monodisperse magnetite nanoparticles with nearly ideal saturation magnetization. RSC Advances, 2016, 6, 77452-77464.	3. 6	133
11	Magnetic Particle Imaging With Tailored Iron Oxide Nanoparticle Tracers. IEEE Transactions on Medical Imaging, 2015, 34, 1077-1084.	8.9	177
12	Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale, 2015, 7, 11142-11154.	5.6	252
13	Tuning Surface Coatings of Optimized Magnetite Nanoparticle Tracers for <italic>In Vivo</italic> Magnetic Particle Imaging. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	35
14	InÂvivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials, 2015, 52, 251-261.	11.4	77
15	Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. Nanoscale, 2015, 7, 16890-16898.	5 . 6	99
16	In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chemical Society Reviews, 2015, 44, 8576-8607.	38.1	634
17	Intracellular performance of tailored nanoparticle tracers in magnetic particle imaging. Journal of Applied Physics, 2014, 115, 17B306.	2.5	27
18	Highly Stable Amine Functionalized Iron Oxide Nanoparticles Designed for Magnetic Particle Imaging (MPI). IEEE Transactions on Magnetics, 2013, 49, 3500-3503.	2.1	26

#	Article	IF	Citations
19	Monodisperse magnetite nanoparticle tracers for inÂvivo magnetic particle imaging. Biomaterials, 2013, 34, 3837-3845.	11.4	129
20	Sizeâ€dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments. Medical Physics, 2013, 40, 071904.	3.0	71
21	Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers. Biomedizinische Technik, 2013, 58, 493-507.	0.8	51
22	Tracer design for magnetic particle imaging (invited). Journal of Applied Physics, 2012, 111, 78318-783185.	2.5	110
23	Xâ€Space MPI: Magnetic Nanoparticles for Safe Medical Imaging. Advanced Materials, 2012, 24, 3870-3877.	21.0	248
24	Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy. IEEE Transactions on Magnetics, 2010, 46, 2523-2558.	2.1	683
25	Phase transfer of highly monodisperse iron oxide nanocrystals with Pluronic F127 for biomedical applications. Journal of Magnetism and Magnetic Materials, 2007, 311, 59-62.	2.3	89