Kishore Vl Parsa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1381144/publications.pdf

Version: 2024-02-01

34	839	17 h-index	28
papers	citations		g-index
35	35	35	1311
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	PHLPP1 promotes neutral lipid accumulation through AMPK/ChREBP-dependent lipid uptake and fatty acid synthesis pathways. IScience, 2022, 25, 103766.	1.9	13
2	Fe(III)-catalyzed regioselective and faster synthesis of isocoumarins with 3-oxoalkyl moiety at C-4: Identification of new inhibitors of PDE4. Bioorganic Chemistry, 2022, 121, 105667.	2.0	3
3	PIMT/TGS1: An evolving metabolic molecular switch with conserved methyl transferase activity. Drug Discovery Today, 2022, , .	3.2	О
4	PHLPPs: Emerging players in metabolic disorders. Drug Discovery Today, 2022, 27, 103317.	3.2	4
5	PdCl2-catalyzed synthesis of a new class of isocoumarin derivatives containing aminosulfonyl / aminocarboxamide moiety: First identification of a isocoumarin based PDE4 inhibitor. European Journal of Medicinal Chemistry, 2021, 221, 113514.	2.6	11
6	Synthesis of 11,12-dihydro benzo[c]phenanthridines via a Pd-catalyzed unusual construction of isocoumarin ring/FeCl3-mediated intramolecular arene-allyl cyclization: First identification of a benzo[c]phenanthridine based PDE4 inhibitor. Bioorganic Chemistry, 2020, 97, 103691.	2.0	11
7	InCl3 mediated heteroarylation of indoles and their derivatization via C H activation strategy: Discovery of 2-(1H-indol-3-yl)-quinoxaline derivatives as a new class of PDE4B selective inhibitors for arthritis and/or multiple sclerosis. European Journal of Medicinal Chemistry, 2019, 174, 198-215.	2.6	24
8	ERK1/2 activated PHLPP1 induces skeletal muscle ER stress through the inhibition of a novel substrate AMPK. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1702-1716.	1.8	21
9	Deubiquitinase USP12 promotes LPS induced macrophage responses through inhibition of lîºBα. Biochemical and Biophysical Research Communications, 2017, 483, 69-74.	1.0	10
10	In-house made nucleofection buffer for efficient and cost effective transfection of RAW 264.7 macrophages. Biochemical and Biophysical Research Communications, 2017, 487, 247-254.	1.0	11
11	LPS depletes PHLPP levels in macrophages through the inhibition of SP1 dependent transcriptional regulation. Biochemical and Biophysical Research Communications, 2017, 486, 533-538.	1.0	9
12	MicroRNA-712 restrains macrophage pro-inflammatory responses by targeting LRRK2 leading to restoration of insulin stimulated glucose uptake by myoblasts. Molecular Immunology, 2017, 82, 1-9.	1.0	11
13	MicroRNA-16 modulates macrophage polarization leading to improved insulin sensitivity in myoblasts. Biochimie, 2015, 119, 16-26.	1.3	24
14	Synthesis of 2H-1,3-benzoxazin-4(3 H)-one derivatives containing indole moiety: Their in vitro evaluation against PDE4B. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1166-1171.	1.0	23
15	Synthesis of N-(3-arylprop-2-ynyl)substituted olanzapine derivatives as potential inhibitors of PDE4B. Tetrahedron Letters, 2014, 55, 3176-3180.	0.7	4
16	Montmorillonite K-10 catalyzed green synthesis of 2,6-unsubstituted dihydropyridines as potential inhibitors of PDE4. European Journal of Medicinal Chemistry, 2013, 62, 395-404.	2.6	18
17	Discovery of novel 1,4-dihydropyridine-based PDE4 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1104-1109.	1.0	22
18	Novel imidazophenoxazine-4-sulfonamides: Their synthesis and evaluation as potential inhibitors of PDE4. Bioorganic and Medicinal Chemistry, 2013, 21, 1952-1963.	1.4	10

#	Article	IF	CITATIONS
19	Pd-mediated functionalization of polysubstituted pyrroles: Their evaluation as potential inhibitors of PDE4. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5639-5647.	1.0	17
20	Pyrrolo[2,3-b]quinoxalines as inhibitors of firefly luciferase: Their Cu-mediated synthesis and evaluation as false positives in a reporter gene assay. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6433-6441.	1.0	28
21	Montmorillonite K-10 mediated green synthesis of cyano pyridines: Their evaluation as potential inhibitors of PDE4. European Journal of Medicinal Chemistry, 2012, 48, 265-274.	2.6	23
22	C–C bond formation at C-2 of a quinoline ring: Synthesis of 2-(1H-indol-3-yl)quinoline-3-carbonitrile derivatives as a new class of PDE4 inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 2199-2207.	1.4	23
23	Design and synthesis of 4-alkynyl pyrazoles as inhibitors of PDE4: A practical access via Pd/C–Cu catalysis. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2480-2487.	1.0	16
24	Conformationally restricted novel pyrazole derivatives: Synthesis of 1,8-disubstituted 5,5-dimethyl-4,5-dihydro-1H-benzo[g]indazoles as a new class of PDE4 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3248-3255.	1.0	10
25	AlCl3 induced C-arylation/cyclization in a single pot: a new route to benzofuran fused N-heterocycles of pharmacological interest. Tetrahedron Letters, 2012, 53, 1134-1138.	0.7	21
26	Preclinical development of dipeptidyl peptidase IV inhibitor alogliptin: a brief overview. Expert Opinion on Drug Discovery, 2011, 6, 855-869.	2.5	13
27	Novel 1-alkynyl substituted 1,2-dihydroquinoline derivatives from nimesulide (and their 2-oxo) Tj ETQq1 1 0.7843. Letters, 2011, 21, 6573-6576.	14 rgBT /C 1.0	Overlock 10 30
28	Emerging Drug Candidates of Dipeptidyl Peptidase IV (DPP IV) Inhibitor Class for the Treatment of Type 2 Diabetes. Current Drug Targets, 2009, 10, 71-87.	1.0	93
29	IFNγ enhances ILâ€23 production during <i>Francisella</i> infection of human monocytes. FEBS Letters, 2008, 582, 1044-1048.	1.3	13
30	The tyrosine kinase Syk promotes phagocytosis of Francisella through the activation of Erk. Molecular Immunology, 2008, 45, 3012-3021.	1.0	48
31	Francisella gains a survival advantage within mononuclear phagocytes by suppressing the host IFNÎ ³ response. Molecular Immunology, 2008, 45, 3428-3437.	1.0	37
32	Negative Regulators of Toll-like Receptor 4-Mediated Macrophage Inflammatory Response. Current Pharmaceutical Design, 2006, 12, 4143-4153.	0.9	31
33	BMRP is a Bcl-2 binding protein that induces apoptosis. Journal of Cellular Biochemistry, 2005, 94, 611-626.	1.2	37
34	Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer. BMC Biotechnology, 2004, 4, 23.	1.7	170