## **Guadalupe** Pinar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1380495/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Microbial deterioration of cultural heritage and works of art — tilting at windmills?. Applied<br>Microbiology and Biotechnology, 2013, 97, 9637-9646.                                                                 | 1.7 | 356       |
| 2  | An advanced molecular strategy to identify bacterial communities on art objects. Journal of<br>Microbiological Methods, 2001, 45, 77-87.                                                                               | 0.7 | 135       |
| 3  | Altamira cave Paleolithic paintings harbor partly unknown bacterial communities. FEMS Microbiology<br>Letters, 2002, 211, 7-11.                                                                                        | 0.7 | 131       |
| 4  | Phylogenetic diversity of bacteria associated with Paleolithic paintings and surrounding rock walls in two Spanish caves (LlonÃfÂn and La Garma). FEMS Microbiology Ecology, 2004, 47, 235-247.                        | 1.3 | 121       |
| 5  | Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere, 2007, 68, 1929-1936.                                       | 4.2 | 117       |
| 6  | Comparative analyses of the bacterial diversity on two different biodeteriorated wall paintings by<br>DGGE and 16S rDNA sequence analysis. International Biodeterioration and Biodegradation, 2000, 46,<br>229-239.    | 1.9 | 114       |
| 7  | Application of molecular techniques for identification of fungal communities colonising paper material. International Biodeterioration and Biodegradation, 2006, 58, 133-141.                                          | 1.9 | 106       |
| 8  | Analysis of fungal communities on historical church window glass by denaturing gradient gel<br>electrophoresis and phylogenetic 18S rDNA sequence analysis. Journal of Microbiological Methods,<br>2001, 47, 345-354.  | 0.7 | 94        |
| 9  | Molecular and Microscopical Investigation of the Microflora Inhabiting a Deteriorated Italian<br>Manuscript Dated from the Thirteenth Century. Microbial Ecology, 2010, 60, 69-80.                                     | 1.4 | 94        |
| 10 | Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. International Biodeterioration and Biodegradation, 2008, 62, 352-363.  | 1.9 | 93        |
| 11 | Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in Tito Bustillo cave, Spain, and on its Palaeolithic paintings. Environmental Microbiology, 2002, 4, 392-400. | 1.8 | 89        |
| 12 | Microbial survey of the mummies from the Capuchin Catacombs of Palermo, Italy: biodeterioration risk and contamination of the indoor air. FEMS Microbiology Ecology, 2013, 86, 341-356.                                | 1.3 | 81        |
| 13 | Influence of compost and biochar on microbial communities and the sorption/degradation of PAHs and NSO-substituted PAHs in contaminated soils. Journal of Hazardous Materials, 2018, 345, 107-113.                     | 6.5 | 71        |
| 14 | Limestone biodeterioration: A review on the Portuguese cultural heritage scenario. Journal of Cultural Heritage, 2019, 36, 275-285.                                                                                    | 1.5 | 70        |
| 15 | Unmasking the measlesâ€like parchment discoloration: molecular and microanalytical approach.<br>Environmental Microbiology, 2015, 17, 427-443.                                                                         | 1.8 | 69        |
| 16 | Monitoring the colonization of monuments by bacteria: cultivation versus molecular methods.<br>Environmental Microbiology, 2003, 5, 72-74.                                                                             | 1.8 | 68        |
| 17 | Rubrobacter -related bacteria associated with rosy discolouration of masonry and lime wall paintings. Archives of Microbiology, 2001, 176, 347-354.                                                                    | 1.0 | 65        |
| 18 | Biodeterioration and restoration of a 16th-century book using a combination of conventional and molecular techniques: A case study. International Biodeterioration and Biodegradation, 2009, 63, 161-168.              | 1.9 | 65        |

GUADALUPE PINAR

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Future directions and challenges in biodeterioration research on historic materials and cultural properties. International Biodeterioration and Biodegradation, 2018, 129, 10-12.                                                            | 1.9 | 63        |
| 20 | Contribution of the Microbial Communities Detected on an Oil Painting on Canvas to Its<br>Biodeterioration. PLoS ONE, 2013, 8, e80198.                                                                                                       | 1.1 | 62        |
| 21 | First evaluation of the microbiome of built cultural heritage by using the Ion Torrent next generation sequencing platform. International Biodeterioration and Biodegradation, 2018, 131, 11-18.                                             | 1.9 | 61        |
| 22 | Detection of Indigenous Halobacillus Populations in Damaged Ancient Wall Paintings and Building<br>Materials: Molecular Monitoring and Cultivation. Applied and Environmental Microbiology, 2001, 67,<br>4891-4895.                          | 1.4 | 57        |
| 23 | The micro-biota of a sub-surface monument the medieval chapel of St. Virgil (Vienna, Austria).<br>International Biodeterioration and Biodegradation, 2009, 63, 851-859.                                                                      | 1.9 | 56        |
| 24 | Microscopic, chemical, and molecular-biological investigation of the decayed medieval stained window glasses of two Catalonian churches. International Biodeterioration and Biodegradation, 2013, 84, 388-400.                               | 1.9 | 56        |
| 25 | Molecular monitoring of the microbial dynamics occurring on historical limestone buildings during<br>and after the in situ application of different bio-consolidation treatments. Science of the Total<br>Environment, 2011, 409, 5337-5352. | 3.9 | 53        |
| 26 | Microbial communities adhering to the obverse and reverse sides of an oil painting on canvas: identification and evaluation of their biodegradative potential. Aerobiologia, 2013, 29, 301-314.                                              | 0.7 | 52        |
| 27 | Monitoring the effects of different conservation treatments on paper-infecting fungi. International<br>Biodeterioration and Biodegradation, 2013, 84, 333-341.                                                                               | 1.9 | 50        |
| 28 | Archaeal communities in two disparate deteriorated ancient wall paintings: detection, identification and temporal monitoring by denaturing gradient gel electrophoresis. FEMS Microbiology Ecology, 2001, 37, 45-54.                         | 1.3 | 49        |
| 29 | Amid the possible causes of a very famous foxing: molecular and microscopic insight into<br><scp>L</scp> eonardo da <scp>V</scp> inci's selfâ€portrait. Environmental Microbiology Reports, 2015, 7,<br>849-859.                             | 1.0 | 46        |
| 30 | Halophilic Microorganisms Are Responsible for the Rosy Discolouration of Saline Environments in<br>Three Historical Buildings with Mural Paintings. PLoS ONE, 2014, 9, e103844.                                                              | 1.1 | 45        |
| 31 | Culture free DGGE and cloning based monitoring of changes in bacterial communities of salad due to processing. Food and Chemical Toxicology, 2005, 43, 1595-1605.                                                                            | 1.8 | 42        |
| 32 | Microbes on building materials — Evaluation of DNA extraction protocols as common basis for molecular analysis. Science of the Total Environment, 2012, 439, 44-53.                                                                          | 3.9 | 40        |
| 33 | Flow cytometry as a tool to assess the effects of gamma radiation on the viability, growth and metabolic activity of fungal spores. International Biodeterioration and Biodegradation, 2013, 84, 250-257.                                    | 1.9 | 40        |
| 34 | Halophilic bacteria are colonizing the exhibition areas of the Capuchin Catacombs in Palermo, Italy.<br>Extremophiles, 2014, 18, 677-691.                                                                                                    | 0.9 | 40        |
| 35 | Rapid diagnosis of biological colonization in cultural artefacts using the MinION nanopore sequencing technology. International Biodeterioration and Biodegradation, 2020, 148, 104908.                                                      | 1.9 | 37        |
| 36 | A Combined Approach to Assess the Microbial Contamination of the Archimedes Palimpsest. Microbial Ecology, 2015, 69, 118-134.                                                                                                                | 1.4 | 36        |

GUADALUPE PINAR

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Cultivation and molecular monitoring of halophilic microorganisms inhabiting an extreme<br>environment presented by a salt-attacked monument. International Journal of Astrobiology, 2010, 9,<br>59-72.        | 0.9 | 34        |
| 38 | Removal of high concentrations of nitrate from industrial wastewaters by bacteria. Applied and Environmental Microbiology, 1997, 63, 2071-2073.                                                                | 1.4 | 33        |
| 39 | Biodeterioration Risk Threatens the 3100 Year Old Staircase of Hallstatt (Austria): Possible<br>Involvement of Halophilic Microorganisms. PLoS ONE, 2016, 11, e0148279.                                        | 1.1 | 32        |
| 40 | Bacterial Community Dynamics During the Application of a Myxococcus xanthus-Inoculated Culture<br>Medium Used for Consolidation of Ornamental Limestone. Microbial Ecology, 2010, 60, 15-28.                   | 1.4 | 30        |
| 41 | Molecular characterisation of Halobacillus strains isolated from different medieval wall paintings<br>and building materials in Austria. International Biodeterioration and Biodegradation, 2006, 58, 124-132. | 1.9 | 28        |
| 42 | Metabolism of Nitrate Esters by a Consortium of Two Bacteria. Nature Biotechnology, 1996, 14, 320-322.                                                                                                         | 9.4 | 27        |
| 43 | Quantification of fungal abundance on cultural heritage using real time PCR targeting the β-actin<br>gene. Frontiers in Microbiology, 2014, 5, 262.                                                            | 1.5 | 27        |
| 44 | Aspergillus atacamensis and A. salisburgensis: two new halophilic species from hypersaline/arid habitats with a phialosimplex-like morphology. Extremophiles, 2017, 21, 755-773.                               | 0.9 | 27        |
| 45 | The Microbiome of Leonardo da Vinci's Drawings: A Bio-Archive of Their History. Frontiers in<br>Microbiology, 2020, 11, 593401.                                                                                | 1.5 | 24        |
| 46 | [29] Identification of archaea in objects of art by denaturing gradient gel electrophoresis analysis and shotgun cloning. Methods in Enzymology, 2001, 336, 356-366.                                           | 0.4 | 18        |
| 47 | Draft Genome Sequences of the Black Rock Fungus <i>Knufia petricola</i> and Its Spontaneous<br>Nonmelanized Mutant. Genome Announcements, 2017, 5, .                                                           | 0.8 | 18        |
| 48 | Back to the Salt Mines: Genome and Transcriptome Comparisons of the Halophilic Fungus Aspergillus salisburgensis and Its Halotolerant Relative Aspergillus sclerotialis. Genes, 2019, 10, 381.                 | 1.0 | 17        |
| 49 | A time travel story: metagenomic analyses decipher the unknown geographical shift and the storage<br>history of possibly smuggled antique marble statues. Annals of Microbiology, 2019, 69, 1001-1021.         | 1.1 | 17        |
| 50 | Natural sciences at the service of art and cultural heritage: an interdisciplinary area in development and important challenges. Microbial Biotechnology, 2021, 14, 806-809.                                   | 2.0 | 17        |
| 51 | Molecular Tools for Monitoring the Ecological Sustainability of a Stone Bio-Consolidation<br>Treatment at the Royal Chapel, Granada. PLoS ONE, 2015, 10, e0132465.                                             | 1.1 | 16        |
| 52 | Big Sound and Extreme Fungi—Xerophilic, Halotolerant Aspergilli and Penicillia with Low Optimal<br>Temperature as Invaders of Historic Pipe Organs. Life, 2018, 8, 22.                                         | 1.1 | 15        |
| 53 | Decoding the biological information contained in two ancient Slavonic parchment codices: an added historical value. Environmental Microbiology, 2020, 22, 3218-3233.                                           | 1.8 | 15        |
| 54 | Metabolic profiling of <i>Minimedusa polyspora</i> (Hotson) Weresub & P.M. LeClair, a cellulolytic fungus isolated from Mediterranean maquis, in southern Italy. Plant Biosystems, 2014, 148, 333-341.         | 0.8 | 13        |

**GUADALUPE PINAR** 

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Influence of Carbon Source on Nitrate Removal by Nitrate-Tolerant <i>Klebsiella oxytoca</i> CECT<br>4460 in Batch and Chemostat Cultures. Applied and Environmental Microbiology, 1998, 64, 2970-2976. | 1.4 | 12        |
| 56 | Bio-susceptibility of Materials and Thermal Insulation Systems used for Historical Buildings. Energy<br>Procedia, 2013, 40, 499-506.                                                                   | 1.8 | 11        |
| 57 | Insect pests and Integrated Pest Management in the Capuchin Catacombs of Palermo, Italy.<br>International Biodeterioration and Biodegradation, 2018, 131, 107-114.                                     | 1.9 | 11        |
| 58 | Contamination of wounds with fecal bacteria in immuno-suppressed mice. Scientific Reports, 2020, 10, 11494.                                                                                            | 1.6 | 8         |
| 59 | A strain of Arthrobacter that tolerates high concentrations of nitrate. Biodegradation, 1997, 8, 393-399.                                                                                              | 1.5 | 7         |
| 60 | The Kiev Folia: An interdisciplinary approach to unravelling the past of an ancient Slavonic manuscript. International Biodeterioration and Biodegradation, 2022, 167, 105342.                         | 1.9 | 7         |
| 61 | A Multi-Analytical Approach to Infer Mineral–Microbial Interactions Applied to Petroglyph Sites in the Negev Desert of Israel. Applied Sciences (Switzerland), 2022, 12, 6936.                         | 1.3 | 6         |
| 62 | Removal of nitrate from industrial wastewaters in a pilot plant by nitrate-tolerantKlebsiella oxytoca<br>CECT 4460 andArthrobacter globiformis CECT 4500. , 1998, 58, 510-514.                         |     | 5         |
| 63 | Recombinant <i>Klebsiella oxytoca</i> Strains with Improved Efficiency in Removal of High Nitrate<br>Loads. Applied and Environmental Microbiology, 1998, 64, 5016-5019.                               | 1.4 | 5         |
| 64 | Molecular-Based Techniques for the Study of Microbial Communities in Artworks. , 2021, , 59-77.                                                                                                        |     | 1         |
| 65 | Molecular Approaches for the Assessment of Microbial Deterioration of Objects of Art. , 2000, , 39-47.                                                                                                 |     | 1         |
|    |                                                                                                                                                                                                        |     |           |

66 Schimmelpilze in Museen, Sammlungen und Depots. , 2015, , 187-198.

0