
Shi-Li Shu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1380489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synergistic optimization in solidification microstructure and mechanical performance of novel (TiC N) Tj ETQq1 1 Manufacturing, 2022, 155, 106843.	0.784314 3.8	rgBT /Over 36
2	Effect mechanism of mono-particles or hybrid-particles on the thermophysical characteristics and mechanical properties of Cu matrix composites. Ceramics International, 2022, 48, 23033-23043.	2.3	10
3	Microstructure manipulation mechanism and mechanical properties improvement of H13 steel via trace nano-(TiCÂ+ÂTiB2) particles. Materials Characterization, 2022, 188, 111924.	1.9	19
4	Microstructure manipulation and strengthening mechanism of TiAl composites reinforced by Cr solid solution and in-situ nanometer-sized TiB2 particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 845, 143214.	2.6	24
5	Reaction behaviors and specific exposed crystal planes manipulation mechanism of TiC nanoparticles. Journal of the American Ceramic Society, 2021, 104, 2820-2835.	1.9	19
6	Interface formation and bonding control in high-volume-fraction (TiC+TiB2)/Al composites and their roles in enhancing properties. Composites Part B: Engineering, 2021, 209, 108605.	5.9	130
7	Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution. Composites Part B: Engineering, 2021, 217, 108912.	5.9	117
8	Microstructural configuration and compressive deformation behavior of a TiAl composite reinforced by Mn and in situ Ti2AlC particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141772.	2.6	39
9	Microstructure manipulation and strengthening mechanisms of 40Cr steel via trace TiC nanoparticles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141693.	2.6	40
10	Role of trace nanoparticles in establishing fully optimized microstructure configuration of cold-rolled Al alloy. Materials and Design, 2021, 206, 109743.	3.3	45
11	Microstructure evolution and mechanical property enhancement of high-Cr hot work die steel manipulated by trace amounts of nano-sized TiC. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141788.	2.6	28
12	Insight into solidification microstructure control by trace TiCN–TiB2 particles for yielding fine-tuned nanoprecipitates in a hypoeutectic Al–Si–Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 827, 142093.	2.6	29
13	Unprecedented enhancement in strength-plasticity synergy of (TiC+Al6MoTi+Mo)/Al cermet by multiple length-scale microstructure stimulated synergistic deformation. Composites Part B: Engineering, 2021, 225, 109265.	5.9	41
14	Multiscale design of α-Al, eutectic silicon and Mg2Si phases in Al-Si-Mg alloy manipulated by in situ nanosized crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140627.	2.6	32
15	Simultaneously improved strength and toughness of in situ bi-phased TiB2–Ti(C,N)–Ni cermets by Mo addition. Journal of Alloys and Compounds, 2020, 820, 153068.	2.8	33
16	Investigation of the influences of ternary Mg addition on the solidification microstructure and mechanical properties of as-cast Al–10Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 798, 140247.	2.6	38
17	Strengthening mechanism of TiC/Al composites using Al-Ti-C/CNTs with doping alloying elements (Mg,) Tj ETQq1	1 0.78431 2.6	l 4 rgBT /Ovi 16

Sнı-Lı Sнu

#	Article	IF	CITATIONS
19	Processing, multiscale microstructure refinement and mechanical property enhancement of hypoeutectic Al–Si alloys via in situ bimodal-sized TiB2 particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 777, 139081.	2.6	66
20	Pulse control in self-mode-locked 2.8µm Er-doped fluoride fiber lasers. Optics and Laser Technology, 2020, 129, 106285.	2.2	0
21	Beam quality improvement of 1.95-μm GaSb-based broad-area self-pulsed laser by off-axis feedback. Optical Engineering, 2020, 59, 1.	0.5	1
22	High power femtosecond semiconductor lasers based on saw-toothed master-oscillator power-amplifier system with compressed ASE. Optics Express, 2020, 28, 7108.	1.7	0
23	Beam waist shrinkage of high-power broad-area diode lasers by mode tailoring. Optics Express, 2020, 28, 13131.	1.7	6
24	Harmonic mode-locking in an external cavity tapered diode laser with saw-toothed microstructure. Applied Physics Express, 2019, 12, 102011.	1.1	2
25	The Synthesis, Structure, Morphology Characterizations and Evolution Mechanisms of Nanosized Titanium Carbides and Their Further Applications. Nanomaterials, 2019, 9, 1152.	1.9	54
26	Near-diffraction-limited semiconductor disk lasers. Optics Communications, 2019, 449, 39-44.	1.0	3
27	Design of TiC nanoparticles and their morphology manipulating mechanisms by stoichiometric ratios: Experiment and first-principle calculation. Materials and Design, 2019, 181, 107951.	3.3	64
28	High Power (>27 W) Semiconductor Disk Laser Based on Pre-Metalized Diamond Heat-Spreader. IEEE Photonics Journal, 2019, 11, 1-8.	1.0	10
29	Beam Control in an Intracavity Frequency-Doubling Semiconductor Disk Laser. Applied Sciences (Switzerland), 2019, 9, 1584.	1.3	1
30	Enhancing Third- and Fifth-Order Nonlinearity via Tunneling in Multiple Quantum Dots. Nanomaterials, 2019, 9, 423.	1.9	10
31	Efficient microstructure refinement of Al–Si–Mg alloy manipulated by nanocrystals formed by in-situ crystallization in melt. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 751, 90-98.	2.6	17
32	Parity-time symmetry in coherent asymmetric double quantum wells. Scientific Reports, 2019, 9, 2607.	1.6	7
33	Microstructure refinement and strengthening mechanisms of bimodal-sized and dual-phased (TiCn-Al3Tim)/Al hybrid composites assisted ultrasonic vibration. Journal of Alloys and Compounds, 2019, 788, 1309-1321.	2.8	34
34	Extracting more light for vertical emission: high power continuous wave operation of 1.3-μm quantum-dot photonic-crystal surface-emitting laser based on a flat band. Light: Science and Applications, 2019, 8, 108.	7.7	22
35	Efficiency and Threshold Characteristics of Spectrally Beam Combined High-Power Diode Lasers. IEEE Journal of Quantum Electronics, 2019, 55, 1-7.	1.0	6
36	Effects of alloying elements on the phase constitution and microstructure of in situ SiC/Al composites. International Journal of Modern Physics B, 2019, 33, 1940048.	1.0	4

Sнı-Lı Sнu

#	Article	IF	CITATIONS
37	Effects of Cu, Zn, W and Mo on the compression properties of in-situ nano-Ti5Si3/TiAl composite. International Journal of Modern Physics B, 2019, 33, 1940051.	1.0	3
38	Effect of Ta addition on the microstructures and mechanical properties of in situ bi-phase (TiB2-TiCxNy)/(Ni-Ta) cermets. Ceramics International, 2019, 45, 4408-4417.	2.3	24
39	Loss tailoring of high-power broad-area diode lasers. Optics Letters, 2019, 44, 3562.	1.7	12
40	High-power GaSb-based microstripe broad-area lasers. Applied Physics Express, 2018, 11, 032702.	1.1	3
41	Asymmetric light diffraction of two-dimensional electromagnetically induced grating with PT symmetry in asymmetric double quantum wells. Optics Express, 2018, 26, 32918.	1.7	38
42	Going Beyond the Beam Quality Limit of Spectral Beam Combining. , 2018, , .		0
43	Microstructures and Compressive Properties of Al Matrix Composites Reinforced with Bimodal Hybrid In-Situ Nano-/Micro-Sized TiC Particles. Materials, 2018, 11, 1284.	1.3	13
44	Off-axis spectral beam combining of Bragg reflection waveguide photonic crystal diode lasers. Japanese Journal of Applied Physics, 2018, 57, 060312.	0.8	0
45	Going beyond the beam quality limit of spectral beam combining of diode lasers in a V-shaped external cavity. Optics Express, 2018, 26, 14058.	1.7	12
46	Near-diffraction-limited Bragg reflection waveguide lasers. Applied Optics, 2018, 57, F15.	0.9	4
47	High-brightness diode lasers obtained via off-axis spectral beam combining with selective feedback. Optics Express, 2018, 26, 21813.	1.7	9
48	Progress of optically pumped GaSb based semiconductor disk laser. Opto-Electronic Advances, 2018, 1, 17000301-17000309.	6.4	10
49	Beam control of high-power broad-area photonic crystal lasers using ladderlike groove structure. Applied Physics Express, 2017, 10, 062701.	1.1	4
50	Control of transient gain absorption via tunneling and incoherent pumping in triple quantum dots. Laser Physics, 2017, 27, 015203.	0.6	0
51	Heat dissipation in high-power semiconductor lasers with heat pipe cooling system. Journal of Mechanical Science and Technology, 2017, 31, 2607-2612.	0.7	21
52	Microstructures and tensile properties of nano-sized SiC p /Al-Cu composites fabricated by semisolid stirring assisted with hot extrusion. Materials Characterization, 2017, 131, 195-200.	1.9	49
53	Microstructures and Tensile Properties of Al–Cu Matrix Composites Reinforced with Nano-Sized SiCp Fabricated by Semisolid Stirring Process. Metals, 2017, 7, 49.	1.0	26
54	Fabrication and Characterization of In Situ Synthesized SiC/Al Composites by Combustion Synthesis and Hot Press Consolidation Method. Scanning, 2017, 2017, 1-11.	0.7	22

Sні-Li Sни

#	Article	IF	CITATIONS
55	Fabrication of TiCx-TiB2/Al Composites for Application as a Heat Sink. Materials, 2016, 9, 642.	1.3	31
56	Control of coherence transfer via tunneling in quadruple and multiple quantum dots. Laser Physics Letters, 2016, 13, 125205.	0.6	1
57	Control of lateral divergence in high-power, broad-area photonic crystal lasers. Applied Physics Express, 2016, 9, 072104.	1.1	7
58	Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation. Applied Physics Express, 2016, 9, 112102.	1.1	13
59	Tunneling-assisted coherent population transfer and creation of coherent superposition states in triple quantum dots. Laser Physics Letters, 2016, 13, 125203.	0.6	2
60	Low lateral divergence 2 μm InGaSb/ AlGaAsSb broad-area quantum well lasers. Optics Express, 2016, 24, 7246.	1.7	17
61	Creation and Transfer of Coherence via Technique of Stimulated Raman Adiabatic Passage in Triple Quantum Dots. Nanoscale Research Letters, 2016, 11, 219.	3.1	2
62	Transient gain–absorption of the probe field in triple quantum dots coupled by double tunneling. Optics Communications, 2016, 368, 129-133.	1.0	4
63	Modulation of carrier dynamics and threshold characteristics in 1.3-μm quantum dot photonic crystal nanocavity lasers. Optics and Laser Technology, 2016, 82, 10-16.	2.2	4
64	Effect of Mn, Fe and Co on the compression strength and ductility of in situ nano-sized TiB2/TiAl composites. SpringerPlus, 2015, 4, 784.	1.2	2
65	A Novel Approach of Using Ground CNTs as the Carbon Source to Fabricate Uniformly Distributed Nano-Sized TiCx/2009Al Composites. Materials, 2015, 8, 8839-8849.	1.3	21
66	Effect of Ceramic Content on the Compression Properties of TiB2-Ti2AlC/TiAl Composites. Metals, 2015, 5, 2200-2209.	1.0	7
67	High-Power Ultralow Divergence Edge-Emitting Diode Laser With Circular Beam. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 343-351.	1.9	14
68	Tunneling induced transparency and giant Kerr nonlinearity in multiple quantum dot molecules. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 69, 349-353.	1.3	15
69	Effect of Al addition on the microstructures and compression properties of (TiCxNy–TiB2)/Ni composites fabricated by combustion synthesis and hot press. Powder Technology, 2015, 286, 716-721.	2.1	11
70	Effects of Fe, Co and Ni elements on the ductility of TiAl alloy. Journal of Alloys and Compounds, 2014, 617, 302-305.	2.8	56
71	Effect of strain rate on the compression behavior of TiAl and TiAl–2Mn alloys fabricated by combustion synthesis and hot press consolidation. Intermetallics, 2013, 43, 24-28.	1.8	20
72	Effect of B4C size on the fabrication and compression properties of in situ TiB2–Ti2AlC/TiAl composites. Journal of Alloys and Compounds, 2013, 551, 88-91.	2.8	26

Sні-Li Sни

#	Article	IF	CITATIONS
73	Effect of W content on the compression properties and abrasive wear behavior of the (TiB2–TiCxNy)/(Ni+W) composites. Materials & Design, 2013, 45, 286-291.	5.1	14
74	Comparative study of the compression properties of TiAl matrix composites reinforced with nano-TiB2 and nano-Ti5Si3 particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 596-600.	2.6	68
75	Study of effect of Mn addition on the mechanical properties of Ti2AlC/TiAl composites through first principles study and experimental investigation. Intermetallics, 2012, 28, 65-70.	1.8	32
76	Effect of Ni content on the compression properties and abrasive wear behavior of the (TiB2–TiCxNy)/Ni composites. International Journal of Refractory Metals and Hard Materials, 2012, 34, 8-12.	1.7	6
77	Compression properties and abrasive wear behavior of high volume fraction TiCx–TiB2/Cu composites fabricated by combustion synthesis and hot press consolidation. Materials & Design, 2012, 40, 157-162.	5.1	37
78	Different strain-rate dependent compressive properties and work-hardening capacities of 50 vol% TiC /Al and TiB2/Al composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 538, 335-339.	2.6	13
79	Phase transitions and compression properties of Ti2AlC/TiAl composites fabricated by combustion synthesis reaction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 539, 344-348.	2.6	48
80	Compression properties and work-hardening behavior of Ti2AlC/TiAl composites fabricated by combustion synthesis and hot press consolidation in the Ti–Al–Nb–C system. Materials & Design, 2011, 32, 5061-5065.	5.1	34
81	High volume fraction TiCx/Al composites with good comprehensive performance fabricated by combustion synthesis and hot press consolidation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1931-1936.	2.6	25
82	Effects of alloy elements (Mg, Zn, Sn) on the microstructures and compression properties of high-volume-fraction TiCx/Al composites. Scripta Materialia, 2010, 63, 1209-1211.	2.6	29