## Narong Touch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1380405/publications.pdf Version: 2024-02-01



**МАРОМС ТОИСН** 

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Characteristics of electricity generation and biodegradation in tidal river sludge-used microbial fuel cells. Bioresource Technology, 2014, 158, 225-230.                                                     | 9.6 | 33        |
| 2  | Loss on Ignition-Based Indices for Evaluating Organic Matter Characteristics of Littoral Sediments.<br>Pedosphere, 2017, 27, 978-984.                                                                         | 4.0 | 17        |
| 3  | Relaxing the formation of hypoxic bottom water with sediment microbial fuel cells. Environmental<br>Technology (United Kingdom), 2017, 38, 3016-3025.                                                         | 2.2 | 14        |
| 4  | Granulated Coal Ash – used Method for Remediation of Organic Matter Enriched Coastal Sediments.<br>Procedia Engineering, 2015, 116, 326-333.                                                                  | 1.2 | 11        |
| 5  | Exploratory study on improving the benthic environment in sediment by sediment microbial fuel cells.<br>International Journal of Environmental Science and Technology, 2018, 15, 507-512.                     | 3.5 | 10        |
| 6  | Variation in properties of the sediment following electrokinetic treatments. Environmental<br>Technology (United Kingdom), 2017, 38, 277-284.                                                                 | 2.2 | 7         |
| 7  | Nutrient salt removal by steel-making slag in sediment microbial fuel cells. Environmental Technology<br>(United Kingdom), 2019, 40, 2906-2912.                                                               | 2.2 | 7         |
| 8  | Deposition Behavior of Mud in Sand Beds Under the Effects of Organic Properties. Transport in<br>Porous Media, 2012, 91, 531-546.                                                                             | 2.6 | 5         |
| 9  | Solar Cell-Combined Sediment Microbial Fuel Cell for Preserving Sediment and Water Environments.<br>The International Journal of Environmental Protection, 2017, 7, 37-45.                                    | 0.3 | 5         |
| 10 | Permeability Reduction by Sediment Retention in Saturated Sand Columns. Transport in Porous Media, 2013, 98, 615-630.                                                                                         | 2.6 | 4         |
| 11 | Variances in Properties of Diffused and Accumulated Lipids in Littoral Regions. Journal of Japan<br>Society of Civil Engineers Ser B2 (Coastal Engineering), 2014, 70, I_1086-I_1090.                         | 0.4 | 4         |
| 12 | Temporal variations of groundwater salinity and temperature in a tidal flat in front of a tide pool.<br>Continental Shelf Research, 2016, 122, 29-35.                                                         | 1.8 | 4         |
| 13 | Suppression of nutrient release from freshwater lake sediments using granulated coal ash. Water<br>Science and Technology: Water Supply, 2018, 18, 1810-1824.                                                 | 2.1 | 4         |
| 14 | Dissolution characteristics of granulated coal ash in different saline water conditions. Chemical<br>Engineering Communications, 2019, 206, 535-540.                                                          | 2.6 | 4         |
| 15 | Improvement in benthic habitat environment via granulated coal ash in a water body exposed to<br>wastewater discharge. International Journal of Environmental Science and Technology, 2019, 16,<br>3211-3220. | 3.5 | 4         |
| 16 | Settling Characteristics of Mud Carrying Different Floc Structures. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2012, 68, I_1016-I_1020.                                        | 0.4 | 3         |
| 17 | Classification of the Organic Matter Existing in Littoral Sediments. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2014, 70, I_1101-I_1105.                                       | 0.4 | 3         |
| 18 | Experimental investigation on effects of acid/base waters on the bottom sediment of Kaita Cove<br>(Hiroshima, Japan). Estuarine, Coastal and Shelf Science, 2013, 135, 18-23.                                 | 2.1 | 2         |

NARONG TOUCH

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Modeling the Settling Velocity of Organic Settling Matter with the Consideration of Organic<br>Properties. Coastal Engineering Journal, 2013, 55, 1350015-1-1350015-14.                                         | 1.9 | 2         |
| 20 | Factors for Improving the Performance of Sediment Microbial Fuel Cell. Journal of Japan Society of<br>Civil Engineers Ser B2 (Coastal Engineering), 2014, 70, I_1066-I_1070.                                    | 0.4 | 2         |
| 21 | Measurement of Mud Floc—Settling Velocity Using a Laser Diffraction Particle Size Distribution<br>Analyzer. Coastal Engineering Journal, 2014, 56, 1450012-1-1450012-16.                                        | 1.9 | 2         |
| 22 | PREDICTION OF THE RETENTION VOLUME OF SEDIMENT DURING WATER-BASED SEDIMENT INJECTION.<br>Journal of Porous Media, 2013, 16, 547-557.                                                                            | 1.9 | 2         |
| 23 | Modeling of Settling Velocity Considering Organic Property of Suspended Organic Matter. Journal of<br>Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2009, 65, 1151-1155.                       | 0.4 | 1         |
| 24 | Groundwater Level Variation and Salt Infiltration in a Tidal Flat with Tidal Cycle. Journal of Japan<br>Society of Civil Engineers Ser B2 (Coastal Engineering), 2009, 65, 1161-1165.                           | 0.4 | 1         |
| 25 | Burning Characteristic of Organic Matter deposited on Sea Bottom Sediment. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2011, 67, I_1156-I_1160.                                   | 0.4 | 1         |
| 26 | Evaluating the Distance of Anode Electrode Effects in Sediment by Forced Electron Recovery. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2014, 70, I_1061-I_1065.                  | 0.4 | 1         |
| 27 | RESTORATION OF BIOLOGICAL ENVIRONMENT OF SEWAGE-DERIVED REDUCED SOILS. Journal of Japan Society of Civil Engineers Ser B3 (Ocean Engineering), 2015, 71, I_910-I_915.                                           | 0.3 | 1         |
| 28 | MECHANISMS OF PHOSPHATE IMMOBILIZATION BY GRANULATED COAL ASH. Journal of Japan Society of Civil Engineers Ser B3 (Ocean Engineering), 2017, 73, I_941-I_946.                                                   | 0.3 | 1         |
| 29 | Mechanism of Fine Particles Movement Caused by Groundwater Flow in Tidal Flat. Proceedings of<br>Coastal Engineering Jsce, 2008, 55, 1276-1280.                                                                 | 0.1 | 0         |
| 30 | An Experimental Study on Organic Fine Particles Movement in a Sand Column. Journal of Japan Society<br>of Civil Engineers Ser B2 (Coastal Engineering), 2010, 66, 1076-1080.                                    | 0.4 | 0         |
| 31 | Decomposition and Separation Characteristics of Organic Mud in Kaita Bay by Alkaline and Acid Water.<br>Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2010, 66, 991-995.            | 0.4 | 0         |
| 32 | EFFECT OF ORGANIC PROPERTIES ON THE MUD MOVEMENT IN THE POROUS MEDIA OF SAND. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2011, 67, I_1681-I_1686.                              | 0.1 | 0         |
| 33 | Estimating settling velocity of mud flocs using Laser Diffraction Particle Size Analyzer. Journal of<br>Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2011, 67, I_1051-I_1055.                 | 0.4 | 0         |
| 34 | Effects of Flow Rate and Pore Size on Mud Transport in Sand Beds. Journal of Japan Society of Civil<br>Engineers Ser B2 (Coastal Engineering), 2011, 67, I_971-I_975.                                           | 0.4 | 0         |
| 35 | Thermal Gradient Formed by Large Pore Layer on the Sea Bottom and Estimation of Diffusivity<br>Coefficient. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2011, 67,<br>I_856-I_860. | 0.4 | 0         |
| 36 | MODEL OF PERMEABILITY REDUCTION DUE TO MUD DEPOSITION IN THE PORES OF SAND BEDS. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2012, 68, I_547-I_552.                             | 0.1 | 0         |

| #  | Article                                                                                                                                                                                                               | IF         | CITATIONS              |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|
| 37 | Retention Model of Sediment under Groundwater Flow in Sand Beds. Journal of Japan Society of Civil<br>Engineers Ser B2 (Coastal Engineering), 2012, 68, I_1086-I_1090.                                                | 0.4        | 0                      |
| 38 | Suppression of Oxygen Consumption of Reduced Sediment using Sediment Microbial Fuel Cells.<br>Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2012, 68, I_1201-I_1205.                      | 0.4        | 0                      |
| 39 | PERMEABILITY CHANGE OF SAND BEDS DUE TO SEDIMENT MIGRATION UNDER SEEPAGE FLOW WITH OSCILLATING WATER HEAD CONDITION. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic) Tj ETQq1                          | 1 007.8432 | 14 r <b>g</b> BT /Over |
| 40 | INFLUENCE OF REGIONAL GROUNDWATER ON TIDAL FLAT GROUNDWATER ENVIRONMENT IN OTA RIVER DELTA. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2013, 69, I_547-I_552.                        | 0.1        | 0                      |
| 41 | Changes in Sediment Conditions and Organic Decomposition in Sediment Microbial Fuel Cells. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2013, 69, I_1106-I_1110.                         | 0.4        | Ο                      |
| 42 | Measurement of Sediment Retention in a Sandy Tidal Flat Based on Pressure Drop Model. Transport in<br>Porous Media, 2014, 102, 123-136.                                                                               | 2.6        | 0                      |
| 43 | Evaluating Redox State of Sediment by Microbial Fuel Cell-Based Technology. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2014, 70, I_1071-I_1075.                                        | 0.4        | 0                      |
| 44 | Oxygen Reduction Capacity-Based Method for Analyzing Littoral Sediment Properties. Journal of Japan<br>Society of Civil Engineers Ser B2 (Coastal Engineering), 2014, 70, I_1111-I_1115.                              | 0.4        | 0                      |
| 45 | ELECTRICITY GENERATION AND REMEDIATION OF DEPOSITED SEDIMENT WITHIN SEDIMENT MICROBIAL FUEL CELLS IN TIDAL RIVERS. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2015, 71, I_1465-I_1470. | 0.4        | 0                      |
| 46 | DEVELOPMENT OF A METHOD FOR IMPROVING REDUCED ENVIRONMENT OF THE SLUDGE DEPOSITED IN ESTUARINE REGIONS. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2015, 71, I_697-I_702.            | 0.1        | 0                      |
| 47 | DRY COMBUSTION-BASED METHOD FOR EVALUATING VARIATION OF ORGANIC MATTER STATE IN SEDIMENT.<br>Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2015, 71, I_1417-I_1422.                       | 0.4        | 0                      |
| 48 | CHEMICAL CHARACTERISTICS OF ALKALINE ENVIROMENT RESTORATION MATERIALS. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2015, 71, I_1477-I_1482.                                             | 0.4        | 0                      |
| 49 | Removal of Ammonium from Aqueous Solution by Granulated Coal Ash. Journal of Water Chemistry and Technology, 2021, 43, 305-311.                                                                                       | 0.6        | 0                      |
| 50 | Study on Circulation Mechanism between Hyporheic Water and Wide Area Groundwater in a Tidal<br>Estuary. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2009, 65, 1156-1160.                | 0.4        | 0                      |
| 51 | THE ROLE OF GROUNDWATER FLOW IN A TIDAL FLAT ENVIRONMENT. , 2009, , .                                                                                                                                                 |            | 0                      |
| 52 | VARIATION OF GROUNDWATER QUALITY IN A TIDAL FLAT FORMED AROUND COASTAL STRUCTURE. , 2009, , .                                                                                                                         |            | 0                      |
| 53 | NEW METHOD FOR REDUCTION IN EUTROPHICATION OF SEA WATER BY USING FLY ASH. , 2009, , .                                                                                                                                 |            | 0                      |
| 54 | PROPERTIES OF GRANULATED COAL ASH AND ITS EFFECTS ON SLUDGE PURIFICATION. , 2011, , 1126-1133.                                                                                                                        |            | 0                      |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | DURABILITY OF WATER ENVIRONMENT RESTORATION BY COVERING LAYER OF GRANULATED COAL ASH IN BRACKISH-WATER LAKE. , 2011, , 1110-1117.                                                                      |     | 0         |
| 56 | USABLE OUTPUT OF SEDIMENT MICROBIAL FUEL CELL UNDER THE USE OF STEEL SLAG-MIXED SEDIMENT AS A FUEL. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2018, 74, I_1183-I_1188. | 0.4 | 0         |
| 57 | DECOMPOSITION MECHANISMS OF ORGANIC MATTER DEPOSITED IN THE LAYER OF ALKALINE MATERIALS.<br>Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2018, 74, I_1195-I_1200.         | 0.4 | 0         |
| 58 | ELECTROCHEMICAL METHOD FOR TREATING EXCESS ACCUMULATED SEDIMENT ON THE RIVERBANK OF TIDAL RIVERS. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2019, 75, I_1063-I_1068.   | 0.4 | 0         |