Beibei Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/138011/publications.pdf Version: 2024-02-01

REIDEL OIL

#	Article	IF	CITATIONS
1	Photoinduced-reset and multilevel storage transistor memories based on antimony-doped tin oxide nanoparticles floating gate. Nanotechnology, 2022, 33, 025201.	2.6	8
2	Influence of altering chlorine substitution positions on the photovoltaic properties of small molecule donors in all-small-molecule organic solar cells. Journal of Materials Chemistry C, 2022, 10, 2017-2025.	5.5	12
3	15.71% Efficiency Allâ€Smallâ€Molecule Organic Solar Cells Based on Lowâ€Cost Synthesized Donor Molecules. Advanced Functional Materials, 2022, 32, .	14.9	34
4	Effects of Oxygen Position in the Alkoxy Substituents on the Photovoltaic Performance of A-DA′D-A Type Pentacyclic Small Molecule Acceptors. ACS Energy Letters, 2022, 7, 2373-2381.	17.4	19
5	A Quinoxalineâ€Based D–A Copolymer Donor Achieving 17.62% Efficiency of Organic Solar Cells. Advanced Materials, 2021, 33, e2100474.	21.0	155
6	Nonâ€Halogenatedâ€Solvent Processed and Additiveâ€Free Tandem Organic Solar Cell with Efficiency Reaching 16.67%. Advanced Functional Materials, 2021, 31, 2102361.	14.9	40
7	Fine-Tuning Miscibility and π–π Stacking by Alkylthio Side Chains of Donor Molecules Enables High-Performance All-Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 36033-36043.	8.0	27
8	Effects of the Center Units of Smallâ€Molecule Donors on the Morphology, Photovoltaic Performance, and Device Stability of Allâ€&mallâ€Molecule Organic Solar Cells. Solar Rrl, 2021, 5, 2100515.	5.8	10
9	Effects of Alkyl Side Chains of Small Molecule Donors on Morphology and the Photovoltaic Property of All-Small-Molecule Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 54237-54245.	8.0	13
10	High Efficiency Polymer Solar Cells with Efficient Hole Transfer at Zero Highest Occupied Molecular Orbital Offset between Methylated Polymer Donor and Brominated Acceptor. Journal of the American Chemical Society, 2020, 142, 1465-1474.	13.7	344
11	Silicon and oxygen synergistic effects for the discovery of new high-performance nonfullerene acceptors. Nature Communications, 2020, 11, 5814.	12.8	29
12	Precise Control of Phase Separation Enables 12% Efficiency in All Small Molecule Solar Cells. Advanced Energy Materials, 2020, 10, 2001589.	19.5	33
13	Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nature Communications, 2020, 11, 2726.	12.8	467
14	Tuning the electron-deficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell. Energy and Environmental Science, 2020, 13, 2459-2466.	30.8	324
15	D–A Copolymer Donor Based on Bithienyl Benzodithiophene D-Unit and Monoalkoxy Bifluoroquinoxaline A-Unit for High-Performance Polymer Solar Cells. Chemistry of Materials, 2020, 32, 3254-3261.	6.7	43
16	Understanding the Effect of the Third Component PC ₇₁ BM on Nanoscale Morphology and Photovoltaic Properties of Ternary Organic Solar Cells. Solar Rrl, 2020, 4, 1900540.	5.8	37
17	Highly Efficient All‧mallâ€Molecule Organic Solar Cells with Appropriate Active Layer Morphology by Side Chain Engineering of Donor Molecules and Thermal Annealing. Advanced Materials, 2020, 32, e1908373.	21.0	162
18	Ultrafast Hole Transfer and Carrier Transport Controlled by Nanoscale-Phase Morphology in Nonfullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 3226-3233.	4.6	94

Beibei Qiu

#	Article	IF	CITATIONS
19	Green solvent-processed organic solar cells based on a low cost polymer donor and a small molecule acceptor. Journal of Materials Chemistry C, 2020, 8, 7718-7724.	5.5	40
20	Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells. Science China Chemistry, 2020, 63, 1159-1168.	8.2	92
21	Achieving Fast Charge Separation and Low Nonradiative Recombination Loss by Rational Fluorination for Highâ€Efficiency Polymer Solar Cells. Advanced Materials, 2019, 31, e1905480.	21.0	162
22	Realizing 8.6% Efficiency from Nonâ€Halogenated Solvent Processed Additive Free All Polymer Solar Cells with a Quinoxaline Based Polymer. Solar Rrl, 2019, 3, 1800340.	5.8	20
23	Effect of Replacing Thiophene by Selenophene on the Photovoltaic Performance of Wide Bandgap Copolymer Donors. Macromolecules, 2019, 52, 4776-4784.	4.8	26
24	A Simple Approach to Prepare Chlorinated Polymer Donors with Low-Lying HOMO Level for High Performance Polymer Solar Cells. Chemistry of Materials, 2019, 31, 6558-6567.	6.7	50
25	Enhanced performance of ternary organic solar cells with a wide bandgap acceptor as the third component. Journal of Materials Chemistry A, 2019, 7, 27423-27431.	10.3	23
26	A new non-fullerene acceptor based on the combination of a heptacyclic benzothiadiazole unit and a thiophene-fused end group achieving over 13% efficiency. Physical Chemistry Chemical Physics, 2019, 21, 26557-26563.	2.8	28
27	New-structure perylene diimide oligomers by the linkage of the bay- and imide-position for nonfullerene solar cells. Dyes and Pigments, 2019, 163, 356-362.	3.7	9
28	A low cost and high performance polymer donor material for polymer solar cells. Nature Communications, 2018, 9, 743.	12.8	635
29	High-efficiency organic solar cells based on a small-molecule donor and a low-bandgap polymer acceptor with strong absorption. Journal of Materials Chemistry A, 2018, 6, 9613-9622.	10.3	25
30	High performance as-cast semitransparent polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 4670-4677.	10.3	41
31	Fineâ€Tuning of Molecular Packing and Energy Level through Methyl Substitution Enabling Excellent Small Molecule Acceptors for Nonfullerene Polymer Solar Cells with Efficiency up to 12.54%. Advanced Materials, 2018, 30, 1706124.	21.0	253
32	A universal nonfullerene electron acceptor matching with different band-gap polymer donors for high-performance polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 6874-6881.	10.3	37
33	Effect of Alkylsilyl Sideâ€Chain Structure on Photovoltaic Properties of Conjugated Polymer Donors. Advanced Energy Materials, 2018, 8, 1702324.	19.5	102
34	Nonhalogenated Solvent-Processed All-Polymer Solar Cells over 7.4% Efficiency from Quinoxaline-Based Polymers. ACS Applied Materials & Interfaces, 2018, 10, 41318-41325.	8.0	30
35	Effects of Alkoxy and Fluorine Atom Substitution of Donor Molecules on the Morphology and Photovoltaic Performance of All Small Molecule Organic Solar Cells. Frontiers in Chemistry, 2018, 6, 413.	3.6	19
36	Highâ€Efficiency Allâ€Smallâ€Molecule Organic Solar Cells Based on an Organic Molecule Donor with Alkylsilylâ€Thienyl Conjugated Side Chains. Advanced Materials, 2018, 30, e1706361.	21.0	154

Beibei Qiu

#	Article	IF	CITATIONS
37	Effect of Side-Chain Engineering of Bithienylbenzodithiophene- <i>alt</i> -fluorobenzotriazole-Based Copolymers on the Thermal Stability and Photovoltaic Performance of Polymer Solar Cells. Macromolecules, 2018, 51, 6028-6036.	4.8	47
38	Sideâ€Chain Impact on Molecular Orientation of Organic Semiconductor Acceptors: High Performance Nonfullerene Polymer Solar Cells with Thick Active Layer over 400 nm. Advanced Energy Materials, 2018, 8, 1800856.	19.5	118
39	Side Chain Engineering on Medium Bandgap Copolymers to Suppress Triplet Formation for Highâ€Efficiency Polymer Solar Cells. Advanced Materials, 2017, 29, 1703344.	21.0	209
40	All-Small-Molecule Nonfullerene Organic Solar Cells with High Fill Factor and High Efficiency over 10%. Chemistry of Materials, 2017, 29, 7543-7553.	6.7	184