Mitsutoshi Nakamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1379251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Collective nuclear behavior shapes bilateral nuclear symmetry for subsequent left-right asymmetric morphogenesis in <i>Drosophila</i> . Development (Cambridge), 2021, 148, .	2.5	3
2	Maternal <i>almondex</i> , a neurogenic gene, is required for proper subcellular Notch distribution in early <i>Drosophila</i> embryogenesis. Development Growth and Differentiation, 2020, 62, 80-93.	1.5	5
3	Wash and the wash regulatory complex function in nuclear envelope budding. Journal of Cell Science, 2020, 133, .	2.0	10
4	Infantile Myelofibrosis and Myeloproliferation with CDC42 Dysfunction. Journal of Clinical Immunology, 2020, 40, 554-566.	3.8	27
5	Autocrine insulin pathway signaling regulates actin dynamics in cell wound repair. PLoS Genetics, 2020, 16, e1009186.	3.5	6
6	The kinesin-like protein Pavarotti functions noncanonically to regulate actin dynamics. Journal of Cell Biology, 2020, 219, .	5.2	14
7	Autocrine insulin pathway signaling regulates actin dynamics in cell wound repair. , 2020, 16, e1009186.		0
8	Autocrine insulin pathway signaling regulates actin dynamics in cell wound repair. , 2020, 16, e1009186.		0
9	Autocrine insulin pathway signaling regulates actin dynamics in cell wound repair. , 2020, 16, e1009186.		0
10	Autocrine insulin pathway signaling regulates actin dynamics in cell wound repair. , 2020, 16, e1009186.		0
11	E and ID proteins regulate cell chirality and left–right asymmetric development in <i>Drosophila</i> . Genes To Cells, 2019, 24, 214-230.	1.2	12
12	Wash exhibits context dependent phenotypes and, along with the WASH Regulatory Complex, regulates Drosophila oogenesis. Journal of Cell Science, 2018, 131, .	2.0	13
13	Into the breach: how cells cope with wounds. Open Biology, 2018, 8, .	3.6	36
14	Prepatterning by RhoGEFs governs Rho GTPase spatiotemporal dynamics during wound repair. Journal of Cell Biology, 2017, 216, 3959-3969.	5.2	45
15	Class I Myosins Have Overlapping and Specialized Functions in Left-Right Asymmetric Development in <i>Drosophila</i> . Genetics, 2015, 199, 1183-1199.	2.9	19
16	Left–right asymmetry is formed in individual cells by intrinsic cell chirality. Mechanisms of Development, 2014, 133, 146-162.	1.7	35
17	Reduced cell number in the hindgut epithelium disrupts hindgut left–right asymmetry in a mutant of pebble, encoding a RhoGEF, in Drosophila embryos. Mechanisms of Development, 2013, 130, 169-180.	1.7	18
18	Canonical Wnt signaling in the visceral muscle is required for left–right asymmetric development of the Drosophila midgut. Mechanisms of Development, 2012, 128, 625-639.	1.7	23

#	Article	IF	CITATIONS
19	Chirality in Planar Cell Shape Contributes to Left-Right Asymmetric Epithelial Morphogenesis. Science, 2011, 333, 339-341.	12.6	179
20	Left–right asymmetric morphogenesis of the anterior midgut depends on the activation of a non-muscle myosin II in Drosophila. Developmental Biology, 2010, 344, 693-706.	2.0	20