
Santiago A Molina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1379216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of fuel injection parameters on premixed charge compression ignition combustion and emission characteristics in a medium-duty compression ignition diesel engine. International Journal of Engine Research, 2021, 22, 443-455.	1.4	21
2	Optimization and sizing of a fuel cell range extender vehicle for passenger car applications in driving cycle conditions. Applied Energy, 2021, 285, 116469.	5.1	23
3	New Combustion Modelling Approach for Methane-Hydrogen Fueled Engines Using Machine Learning and Engine Virtualization. Energies, 2021, 14, 6732.	1.6	9
4	Comparative global warming impact and NOX emissions of conventional and hydrogen automotive propulsion systems. Energy Conversion and Management, 2020, 221, 113137.	4.4	49
5	Miller cycle for improved efficiency, load range and emissions in a heavy-duty engine running under reactivity controlled compression ignition combustion. Applied Thermal Engineering, 2018, 136, 161-168.	3.0	35
6	Study on LTC for light duty engines – Part 2 – Spray enhancements. Fuel, 2017, 193, 206-219.	3.4	6
7	Experimental Study of Two Air Management Strategies for Emissions Control in Heavy Duty Engines at Medium to High Loads. Energy & Fuels, 2017, 31, 10011-10022.	2.5	0
8	Analysis of the potential of a new automotive two-stroke gasoline engine able to operate in spark ignition and controlled autoignition combustion modes. Applied Thermal Engineering, 2017, 126, 834-847.	3.0	11
9	Study of Oxidation and Combustion Characteristics of Iron Nanoparticles under Idealized and Enginelike Conditions. Energy & amp; Fuels, 2016, 30, 4318-4330.	2.5	21
10	Theoretical development of a new procedure to predict ignition delays under transient thermodynamic conditions and validation using a Rapid Compression–Expansion Machine. Energy Conversion and Management, 2016, 108, 132-143.	4.4	16
11	New 0-D methodology for predicting NO formation under continuously varying temperature and mixture composition conditions. Energy Conversion and Management, 2015, 91, 367-376.	4.4	2
12	Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Applied Energy, 2015, 143, 211-227.	5.1	101
13	Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity) Tj ETQq1 1 0.784314 2015, 90, 1261-1271.	rgBT /Ove 4.5	erlock 10 Tes 122
14	Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Conversion and Management, 2015, 99, 193-209.	4.4	150
15	Design of synthetic EGR and simulation study of the effect of simplified formulations on the ignition delay of isooctane and n-heptane. Energy Conversion and Management, 2015, 96, 521-531.	4.4	25
16	Validity of the Livengood & Wu correlation and theoretical development of an alternative procedure to predict ignition delays under variable thermodynamic conditions. Energy Conversion and Management, 2015, 105, 836-847.	4.4	15
17	Implementation of the Partially Premixed Combustion concept in a 2-stroke HSDI diesel engine fueled with gasoline. Applied Energy, 2014, 122, 94-111.	5.1	43
18	A computational investigation on the influence of the use of elliptical orifices on the inner nozzle flow and cavitation development in diesel injector nozzles. Energy Conversion and Management, 2014, 79–114-127	4.4	76

SANTIAGO A MOLINA

#	Article	IF	CITATIONS
19	Development of a control-oriented model to optimise fuel consumption and NOX emissions in a DI Diesel engine. Applied Energy, 2014, 119, 405-416.	5.1	33
20	Performance and engine-out emissions evaluation of the double injection strategy applied to the gasoline partially premixed compression ignition spark assisted combustion concept. Applied Energy, 2014, 134, 90-101.	5.1	86
21	An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels. Applied Thermal Engineering, 2014, 63, 66-76.	3.0	156
22	Study of Basic Oxidation and Combustion Characteristics of Aluminum Nanoparticles under Enginelike Conditions. Energy & Fuels, 2014, 28, 3430-3441.	2.5	37
23	Conceptual model description of the double injection strategy applied to the gasoline partially premixed compression ignition combustion concept with spark assistance. Applied Energy, 2014, 129, 1-9.	5.1	51
24	Evaluation of massive exhaust gas recirculation and Miller cycle strategies for mixing-controlled low temperature combustion in a heavy duty diesel engine. Energy, 2014, 71, 355-366.	4.5	45
25	Methodology for measuring exhaust aerosol size distributions using an engine test under transient operating conditions. Measurement Science and Technology, 2011, 22, 115101.	1.4	22
26	Comparison of two injection systems in an HSDI diesel engine using split injection and different injector nozzles. International Journal of Automotive Technology, 2010, 11, 139-146.	0.7	16
27	Study on Low Temperature Combustion for Light-Duty Diesel Engines. Energy & Fuels, 2010, 24, 355-364.	2.5	26
28	Potential of Atkinson cycle combined with EGR for pollutant control in a HD diesel engine. Energy Conversion and Management, 2009, 50, 174-183.	4.4	60
29	Effect of advancing the closing angle of the intake valves on diffusion-controlled combustion in a HD diesel engine. Applied Thermal Engineering, 2009, 29, 1947-1954.	3.0	51
30	Improving pollutant emissions in diesel engines for heavy-duty transportation using retarded intake valve closing strategies. International Journal of Automotive Technology, 2008, 9, 257-265.	0.7	12
31	Selection of a diesel fuel surrogate for the prediction of auto-ignition under HCCI engine conditions. Fuel, 2008, 87, 655-665.	3.4	76
32	The role of nozzle convergence in diesel combustion. Fuel, 2008, 87, 1849-1858.	3.4	27
33	Advanced Injection Strategies to Attain Partially Premixed Combustion Process in a Heavy Duty Diesel Engine. , 2008, , .		11
34	Overview of HCCI diesel engines. , 2007, , 241-267e.		4
35	Analysis of the highly premixed combustion attained by a late injection strategy in an HD diesel engine. International Journal of Vehicle Design, 2006, 40, 327.	0.1	2
36	Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 2006, 26, 226-236.	3.0	146

SANTIAGO A MOLINA

1

#	Article	IF	CITATIONS
37	Influence of injection rate shaping on combustion and emissions for a medium duty diesel engine. Journal of Mechanical Science and Technology, 2006, 20, 1436-1448.	0.7	15
38	The use of micro-orifice nozzles and swirl in a small HSDI engine operating at a late split-injection LTC regime. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006, 220, 1807-1817.	1.1	12
39	Multi-objective optimization of heavy duty diesel engines under stationary conditions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2005, 219, 77-87.	1.1	6
40	Investigation of the Influence of Injection Rate Shaping on the Spray Characteristics in a Diesel Common Rail System Equipped with a Piston Amplifier. Journal of Fluids Engineering, Transactions of the ASME, 2005, 127, 1102-1110.	0.8	29
41	The modification of the fuel injection rate in heavy-duty diesel engines. Part 1: Effects on engine performance and emissions. Applied Thermal Engineering, 2004, 24, 2701-2714.	3.0	71
42	The modification of the fuel injection rate in heavy-duty diesel engines. Applied Thermal Engineering, 2004, 24, 2715-2726.	3.0	56
43	Study of the compression cycle of a reciprocating engine through the polytropic coefficient. Applied Thermal Engineering, 2003, 23, 313-323.	3.0	30
44	Analysis of the Combustion Process in a EURO III Heavy-Duty Direct Injection Diesel Engine. Journal of Engineering for Gas Turbines and Power, 2002, 124, 636-644.	0.5	5
45	Influence of Pre- and Post-Injection on the Performance and Pollutant Emissions in a HD Diesel Engine. , 2001, , .		73
46	Influence of the EGR Rate, Oxygen Concentration and Equivalent Fuel/Air Ratio on the Combustion Behaviour and Pollutant Emissions of a Heavy-Duty Diesel Engine. , 2000, , .		35
47	Influence of the Post-Injection Pattern on Performance, Soot and NOx Emissions in a HD Diesel Engine. , 0, , .		68
48	Reduction of Pollutant Emissions in a HD Diesel Engine by Adjustment of Injection Parameters, Boost Pressure and EGR. , 0, , .		11
49	Influence of Boost Pressure and Injection Pressure on Combustion Process and Exhaust Emissions in a HD Diesel Engine. , 0, , .		17
50	Optimization Towards Low-temperature Combustion in a HSDI Diesel Engine, Using Consecutive Screenings. , 0, , .		5
51	A Numerical Investigation on Combustion Characteristics with the use of Post Injection in DI Diesel Engines. , 0, , .		17
52	Determination of Oxidation Characteristics and Studies on the Feasibility of Metallic Nanoparticles Combustion Under ICE-Like Conditions. SAE International Journal of Fuels and Lubricants, 0, 4, 282-297.	0.2	5
53	Effect of Port Injected Ethanol on Combustion Characteristics in a Dual-Fuel Light Duty Diesel Engine. , 0, , .		26

54 Assessment of the Ignition System Requirement on Diluted Mixture Spark Engines. , 0, , .