
Katherine A Hammer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1378843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Honeys derived from plants of the coastal sandplains of Western Australia: antibacterial and antioxidant activity, and other characteristics. Journal of Apicultural Research, 2023, 62, 909-922.	0.7	8
2	Antimicrobial effects of Melaleuca alternifolia (tea tree) essential oil against biofilm-forming multidrug-resistant cystic fibrosis-associated Pseudomonas aeruginosa as a single agent and in combination with commonly nebulized antibiotics. Letters in Applied Microbiology, 2022, 75, 578-587.	1.0	1
3	An investigation of the suitability of melissopalynology to authenticate Jarrah honey. Current Research in Food Science, 2022, 5, 506-514.	2.7	9
4	Cationic Peptidomimetic Amphiphiles Having a N-Aryl- or N-Naphthyl-1,2,3-Triazole Core Structure Targeting Clostridioides (Clostridium) difficile: Synthesis, Antibacterial Evaluation, and an In Vivo C. difficile Infection Model. Antibiotics, 2021, 10, 913.	1.5	5
5	Development of an HPTLC-based dynamic reference standard for the analysis of complex natural products using Jarrah honey as test sample. PLoS ONE, 2021, 16, e0254857.	1.1	8
6	Honey antibacterial activity: A neglected aspect of honey quality assurance as functional food. Trends in Food Science and Technology, 2021, 118, 870-886.	7.8	39
7	A validated method for the quantitative determination of sugars in honey using high-performance thin-layer chromatography. Journal of Planar Chromatography - Modern TLC, 2020, 33, 489-499.	0.6	16
8	Sugar Profiling of Honeys for Authentication and Detection of Adulterants Using High-Performance Thin Layer Chromatography. Molecules, 2020, 25, 5289.	1.7	28
9	Development and validation of a new microplate assay that utilises optical density to quantify the antibacterial activity of honeys including Jarrah, Marri and Manuka. PLoS ONE, 2020, 15, e0243246.	1.1	13
10	Cationic biaryl 1,2,3-triazolyl peptidomimetic amphiphiles targeting Clostridioides (Clostridium) difficile: Synthesis, antibacterial evaluation and an inÂvivo C. difficile infection model. European Journal of Medicinal Chemistry, 2019, 170, 203-224.	2.6	17
11	Cationic biaryl 1,2,3-triazolyl peptidomimetic amphiphiles: synthesis, antibacterial evaluation and preliminary mechanism of action studies. European Journal of Medicinal Chemistry, 2019, 168, 386-404.	2.6	27
12	Anti-biofilm effects and characterisation of the hydrogen peroxide activity of a range of Western Australian honeys compared to Manuka and multifloral honeys. Scientific Reports, 2019, 9, 17666.	1.6	39
13	Natural products show diverse mechanisms of action against <i>Clostridium difficile</i> . Journal of Applied Microbiology, 2019, 126, 468-479.	1.4	14
14	Effects of natural products on several stages of the spore cycle ofClostridium difficile in vitro. Journal of Applied Microbiology, 2018, 125, 710-723.	1.4	6
15	Non-conventional antimicrobial and alternative therapies for the treatment of Clostridium difficile infection. Anaerobe, 2018, 49, 103-111.	1.0	14
16	Antibacterial compounds from the Australian native plant Eremophila glabra. Fìtoterapìâ, 2018, 126, 45-52.	1.1	16
17	Antimicrobial Activity of Several Cineole-Rich Western Australian Eucalyptus Essential Oils. Microorganisms, 2018, 6, 122.	1.6	33
18	Effect of natural products on the production and activity of Clostridium difficile toxins in vitro. Scientific Reports, 2018, 8, 15735	1.6	16

KATHERINE A HAMMER

#	Article	IF	CITATIONS
19	Spectrum of antibacterial activity and mode of action of a novel tris-stilbene bacteriostatic compound. Scientific Reports, 2018, 8, 6912.	1.6	12
20	Tea tree oil gel for mild to moderate acne; a 12 week uncontrolled, openâ€label phase <scp>II</scp> pilot study. Australasian Journal of Dermatology, 2017, 58, 205-210.	0.4	30
21	Antimicrobial activity of natural products against <i>Clostridium difficile inÂvitro</i> . Journal of Applied Microbiology, 2017, 123, 92-103.	1.4	30
22	Antibacterial activity and chemical characteristics of several Western Australian honeys compared to manuka honey and pasture honey. Archives of Microbiology, 2017, 199, 347-355.	1.0	36
23	Binaphthyl-1,2,3-triazole peptidomimetics with activity against Clostridium difficile and other pathogenic bacteria. Organic and Biomolecular Chemistry, 2015, 13, 5743-5756.	1.5	29
24	Adaptation to NaCl Reduces the Susceptibility of Enterococcus faecalis to Melaleuca alternifolia (Tea) Tj ETQq	0 0 0 rgBT /C 1.9	Overlock 10 Ti
25	Synthesis and antimicrobial activity of binaphthyl-based, functionalized oxazole and thiazole peptidomimetics. Organic and Biomolecular Chemistry, 2015, 13, 10813-10824.	1.5	30
26	Treatment of acne with tea tree oil (melaleuca) products: A review of efficacy, tolerability and potential modes of action. International Journal of Antimicrobial Agents, 2015, 45, 106-110.	1.1	80
27	Synthesis of Mono and Bis[60]fullereneâ€Based Dicationic Peptoids. European Journal of Organic Chemistry, 2015, 2015, 195-201.	1.2	10
28	Recent developments in the bioactivity of mono- and diterpenes: anticancer and antimicrobial activity. Phytochemistry Reviews, 2015, 14, 1-6.	3.1	55
29	Effect of habituation to tea tree (Melaleuca alternifolia) oil on the subsequent susceptibility of Staphylococcus spp. to antimicrobials, triclosan, tea tree oil, terpinen-4-ol and carvacrol. International Journal of Antimicrobial Agents, 2013, 41, 343-351.	1.1	37
30	Inspiration from Old Dyes: Tris(stilbene) Compounds as Potent Gramâ€Positive Antibacterial Agents. Chemistry - A European Journal, 2013, 19, 17980-17988.	1.7	23
31	Effects of Melaleuca alternifolia (Tea Tree) Essential Oil and the Major Monoterpene Component Terpinen-4-ol on the Development of Single- and Multistep Antibiotic Resistance and Antimicrobial Susceptibility. Antimicrobial Agents and Chemotherapy, 2012, 56, 909-915.	1.4	124
32	<i>Candida albicans</i> adhesion to human epithelial cells and polystyrene and formation of biofilm is reduced by sub-inhibitory <i>Melaleuca alternifolia</i> (tea tree) essential oil. Medical Mycology, 2012, 50, 863-870.	0.3	39
33	Use of multiparameter flow cytometry to determine the effects of monoterpenoids and phenylpropanoids on membrane polarity and permeability in staphylococci and enterococci. International Journal of Antimicrobial Agents, 2012, 40, 239-245.	1.1	55
34	Chemical characteristics and antimicrobial effects of some Eucalyptus kinos. Journal of Ethnopharmacology, 2012, 144, 293-299.	2.0	27
35	Survey of the Antimicrobial Activity of Commercially Available Australian Tea Tree (<i>Melaleuca) Tj ETQq1 1 0 Medicine, 2011, 17, 835-841.</i>).784314 rgB 2.1	T /Overlock 1 20
36	Antimicrobial activity of honey from the stingless bee <i>Trigona carbonaria</i> determined by agar diffusion, agar dilution, broth microdilution and time-kill methodology. Journal of Applied Microbiology, 2010, 108, 1534-1543.	1.4	117

KATHERINE A HAMMER

#	Article	IF	CITATIONS
37	Antimicrobial activity of commercial Olea europaea (olive) leaf extract. International Journal of Antimicrobial Agents, 2009, 33, 461-463.	1.1	254
38	Antimicrobial and antiâ€inflammatory activity of five <i>Taxandria fragrans</i> oils <i>in vitro</i> . Microbiology and Immunology, 2008, 52, 522-530.	0.7	22
39	Frequencies of resistance to Melaleuca alternifolia (tea tree) oil and rifampicin in Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis. International Journal of Antimicrobial Agents, 2008, 32, 170-173.	1.1	25
40	Melaleuca alternifolia (Tea Tree) Oil: a Review of Antimicrobial and Other Medicinal Properties. Clinical Microbiology Reviews, 2006, 19, 50-62.	5.7	959
41	Susceptibility of pseudomonads to Melaleuca alternifolia (tea tree) oil and components. Journal of Antimicrobial Chemotherapy, 2006, 58, 449-451.	1.3	53
42	A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food and Chemical Toxicology, 2006, 44, 616-625.	1.8	235
43	Sporicidal activity of tea tree oil. Healthcare Infection, 2006, 11, 112-121.	0.1	2
44	Tea tree oil: a potential alternative for the management of methicillin-resistant Staphylococcus aureus (MRSA). Healthcare Infection, 2005, 10, 32-34.	0.1	1
45	Effectiveness of hand-cleansing formulations containing tea tree oil assessed ex vivo on human skin and in vivo with volunteers using European standard EN 1499. Journal of Hospital Infection, 2005, 59, 220-228.	1.4	34
46	Assessment of the antibacterial activity of tea tree oil using the European EN 1276 and EN 12054 standard suspension tests. Journal of Hospital Infection, 2005, 59, 113-125.	1.4	54
47	Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae. Journal of Antimicrobial Chemotherapy, 2004, 53, 1081-1085.	1.3	239
48	Tolerance of Pseudomonas aeruginosa to Melaleuca alternifolia (tea tree) oil is associated with the outer membrane and energy-dependent cellular processes. Journal of Antimicrobial Chemotherapy, 2004, 54, 386-392.	1.3	96
49	Susceptibility of oral bacteria to Melaleuca alternifolia (tea tree) oil in vitro. Oral Microbiology and Immunology, 2003, 18, 389-392.	2.8	82
50	Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. Journal of Applied Microbiology, 2003, 95, 853-860.	1.4	371
51	In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamentous fungi. Journal of Antimicrobial Chemotherapy, 2002, 50, 195-199.	1.3	138
52	In Vitro Activities of Ketoconazole, Econazole, Miconazole, and Melaleuca alternifolia (Tea Tree) Oil against Malassezia Species. Antimicrobial Agents and Chemotherapy, 2000, 44, 467-469.	1.4	77
53	Precipitate production by some Malassezia species on Dixon's agar. Medical Mycology, 2000, 38, 105-107.	0.3	3
54	Influence of organic matter, cations and surfactants on the antimicrobial activity of Melaleuca alternifolia (tea tree) oil in vitro. Journal of Applied Microbiology, 1999, 86, 446-452.	1.4	80

#	Article	IF	CITATIONS
55	Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 1999, 86, 985-990.	1.4	1,784
56	In-vitro activity of essential oils, in particular Melaleuca alternifolia (tea tree) oil and tea tree oil products, against Candida spp. Journal of Antimicrobial Chemotherapy, 1998, 42, 591-595.	1.3	158
57	<i>In vitro</i> susceptibility of <i>Malassezia furfur</i> to the essential oil of <i>Melaleuca alternifolia</i> . Medical Mycology, 1997, 35, 375-377.	0.3	14
58	Susceptibility of transient and commensal skin flora to the essential oil of Melaleuca alternifolia (tea) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf

In-vitro activity of the essential oil of Melaleuca alternifolia against Streptococcus spp. Journal of 1.3 38 Antimicrobial Chemotherapy, 1996, 37, 1177-1178.
