Miguel Hernaez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1378835/publications.pdf

Version: 2024-02-01

		201385	214527
69	2,263	27	47
papers	citations	h-index	g-index
60	60	60	1202
69	69	69	1303
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Lossy Mode Resonance Generation With Indium-Tin-Oxide-Coated Optical Fibers for Sensing Applications. Journal of Lightwave Technology, 2010, 28, 111-117.	2.7	228
2	Optical sensors based on lossy-mode resonances. Sensors and Actuators B: Chemical, 2017, 240, 174-185.	4.0	182
3	Design rules for lossy mode resonance based sensors. Applied Optics, 2012, 51, 4298.	0.9	177
4	Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings. Sensors and Actuators B: Chemical, 2011, 155, 290-297.	4.0	149
5	Tunable humidity sensor based on ITO-coated optical fiber. Sensors and Actuators B: Chemical, 2010, 146, 414-417.	4.0	126
6	Optical fiber refractometers based on lossy mode resonances supported by TiO_2 coatings. Applied Optics, 2010, 49, 3980.	2.1	118
7	Optical Fibre Sensors Using Graphene-Based Materials: A Review. Sensors, 2017, 17, 155.	2.1	99
8	Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers. Journal of Optics (United Kingdom), 2010, 12, 095503.	1.0	73
9	Optical Fiber Humidity Sensors Using Nanostructured Coatings of SiO\$_{2}\$ Nanoparticles. IEEE Sensors Journal, 2008, 8, 281-285.	2.4	70
10	ITO Coated Optical Fiber Refractometers Based on Resonances in the Infrared Region. IEEE Sensors Journal, 2010, 10, 365-366.	2.4	65
11	Optical fiber refractometers based on Lossy Mode Resonances by means of SnO2 sputtered coatings. Sensors and Actuators B: Chemical, 2014, 202, 154-159.	4.0	62
12	Simultaneous Measurement of Humidity and Temperature Based on an SiO $\{2\}$ -Nanospheres Film Deposited on a Long-Period Grating In-Line With a Fiber Bragg Grating. IEEE Sensors Journal, 2011, 11, 162-166.	2.4	50
13	Micro and Nanostructured Materials for the Development of Optical Fibre Sensors. Sensors, 2017, 17, 2312.	2.1	48
14	High-performance optical fiber humidity sensor based on lossy mode resonance using a nanostructured polyethylenimine and graphene oxide coating. Sensors and Actuators B: Chemical, 2019, 286, 408-414.	4.0	47
15	Photonic Crystal Fiber Temperature Sensor Based on Quantum Dot Nanocoatings. Journal of Sensors, 2009, 2009, 1-6.	0.6	46
16	Dual-Peak Resonance-Based Optical Fiber Refractometers. IEEE Photonics Technology Letters, 2010, 22, 1778-1780.	1.3	43
17	Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings. Sensors and Actuators B: Chemical, 2012, 175, 106-110.	4.0	39
18	Applications of Graphene-Based Materials in Sensors. Sensors, 2020, 20, 3196.	2.1	38

#	Article	IF	CITATIONS
19	Generation of Surface Plasmon Resonance and Lossy Mode Resonance by thermal treatment of ITO thin-films. Optics and Laser Technology, 2015, 69, 1-7.	2.2	37
20	Optical fiber resonance-based pH sensors using gold nanoparticles into polymeric layer-by-layer coatings. Microsystem Technologies, 2016, 22, 1821-1829.	1.2	35
21	From superhydrophilic to superhydrophobic surfaces by means of polymeric Layer-by-Layer films. Applied Surface Science, 2015, 351, 1081-1086.	3.1	34
22	Comparative study of layer-by-layer deposition techniques for poly(sodium phosphate) and poly(allylamine hydrochloride). Nanoscale Research Letters, 2013, 8, 539.	3.1	32
23	Lossy mode resonances toward the fabrication of optical fiber humidity sensors. Measurement Science and Technology, 2012, 23, 014002.	1.4	31
24	Layer-by-Layer assembly of a water–insoluble platinum complex for optical fiber oxygen sensors. Sensors and Actuators B: Chemical, 2015, 207, 683-689.	4.0	31
25	Generation of Lossy Mode Resonances With Absorbing Thin-Films. Journal of Lightwave Technology, 2010, , .	2.7	30
26	Optical Fiber Humidity Sensor Based on Lossy Mode Resonances Supported by TiO2/PSS Coatings. Procedia Engineering, 2011, 25, 1385-1388.	1.2	30
27	Resonances in coated long period fiber gratings and cladding removed multimode optical fibers: a comparative study. Optics Express, 2010, 18, 20183.	1.7	28
28	Sensing Properties of Indium Oxide Coated Optical Fiber Devices Based on Lossy Mode Resonances. IEEE Sensors Journal, 2012, 12, 151-155.	2.4	28
29	Fiber-optic Lossy Mode Resonance Sensors. Procedia Engineering, 2014, 87, 3-8.	1.2	26
30	Graphene Oxide in Lossy Mode Resonance-Based Optical Fiber Sensors for Ethanol Detection. Sensors, 2018, 18, 58.	2.1	26
31	Optical fiber refractometers based on indium tin oxide coatings fabricated by sputtering. Optics Letters, 2012, 37, 28.	1.7	24
32	Optical fiber sensors based on Layer-by-Layer nanostructured films. Procedia Engineering, 2010, 5, 1087-1090.	1.2	19
33	Considerations for Lossy-Mode Resonance-Based Optical Fiber Sensor. IEEE Sensors Journal, 2013, 13, 1167-1171.	2.4	19
34	Optical fiber pH sensor fabrication by means of indium tin oxide coated optical fiber refractometers. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2705-2707.	0.8	18
35	Lossy mode resonances supported by TiO2 -coated optical fibers. Procedia Engineering, 2010, 5, 1099-1102.	1.2	15
36	Lossy Mode Resonance Generation by Graphene Oxide Coatings Onto Cladding-Removed Multimode Optical Fiber. IEEE Sensors Journal, 2019, 19, 6187-6192.	2.4	14

#	Article	IF	Citations
37	U-bend fibre optic pH sensors using layer-by-layer electrostatic self-assembly technique. Journal of Physics: Conference Series, 2009, 178, 012046.	0.3	13
38	Agarose optical fibre humidity sensor based on electromagnetic resonance in the infraâ€red region. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2767-2769.	0.8	13
39	Sensors Based on Thin-Film Coated Cladding Removed Multimode Optical Fiber and Single-Mode Multimode Single-Mode Fiber: A Comparative Study. Journal of Sensors, 2015, 2015, 1-7.	0.6	10
40	Single-modeâ€"multimodeâ€"single-mode and lossy mode resonance-based devices: a comparative study for sensing applications. Microsystem Technologies, 2016, 22, 1633-1638.	1.2	10
41	A COMPARATIVE STUDY IN THE SENSITIVITY OF OPTICAL FIBER REFRACTOMETERS BASED ON THE INCORPORATION OF GOLD NANOPARTICLES INTO LAYERBY-Â LAYER FILMS. International Journal on Smart Sensing and Intelligent Systems, 2015, 8, 822-841.	0.4	9
42	Optical Fiber Refractometers with Tunable Sensitivity Based on Indium Tin Oxide Coatings. Sensor Letters, 2010, 8, 744-746.	0.4	8
43	Sensing properties of ITO coated optical fibers to diverse VOCs. Procedia Engineering, 2010, 5, 653-656.	1.2	7
44	LMR-based optical fiber refractometers based on transparent conducting and semiconducting oxide coatings: a comparative study. Proceedings of SPIE, 2010, , .	0.8	7
45	Exhaled breath optical fiber sensor based on LMRs for respiration monitoring. , 2014, , .		7
46	Lossy-mode resonance-based refractometers by means of indium oxide coatings fabricated onto optical fibers. Proceedings of SPIE, 2010, , .	0.8	5
47	Humidity sensor fabricated by deposition of SnO ₂ layers onto optical fibers. Proceedings of SPIE, 2013, , .	0.8	5
48	Optical fiber humidity sensor based on surface plasmon resonance in the infra-red region. Proceedings of SPIE, 2009, , .	0.8	4
49	Optical Fiber Refractometers based on Indium Tin Oxide Coatings with Response in the Visible Spectral Region. Procedia Engineering, 2011, 25, 499-502.	1.2	4
50	Optical fiber refractometers based on localized surface plasmon resonance (LSPR) and lossy mode resonance (LMR). , 2014, , .		4
51	Optical Fiber Sensors Based on Lossy Mode Resonances. Smart Sensors, Measurement and Instrumentation, 2013, , 191-210.	0.4	3
52	Coatings for Optical Fiber Sensors. , 2014, , 103-119.		3
53	Thin-Film Resonance Supporting Coatings Deposited onto Optical Waveguides Towards the Fabrication of Sensing Devices. Recent Patents on Materials Science, 2011, 4, 28-34.	0.5	3
54	Lossy mode resonance-based optical fiber humidity sensor. , 2011, , .		2

#	Article	IF	CITATIONS
55	Nanocoated optical fibre for lossy mode resonance (LMR) sensors and filters. , 2015, , .		2
56	Quantum Dots coatings inside Photonic Crystal Fibers for temperature sensing. , 2008, , .		1
57	Two nanoFabry-Perot interferometers for humidity sensing. , 2008, , .		1
58	Fiber-optic pH sensors fabrication based on selective deposition of Neutral Red., 2009,,.		1
59	Optical fiber sensors based on indium tin oxide surface plasmon resonance supporting coatings. , 2009, , .		1
60	Optical fiber refractometers based on sputtered indium tin oxide coatings. , 2011, , .		1
61	SnO ₂ based optical fiber refractometers. Proceedings of SPIE, 2012, , .	0.8	1
62	Sensitivity enhancement of a humidity sensor based on poly(sodium phosphate) and poly(allylamine) Tj ETQq0 C) 0 rgBT /(Overlock 10 T
63	Resonance based optical fiber sensors by means of transparent conductive oxide coatings. , 2009, , .		0
64	Resonance-based optical fiber refractometers. , 2011, , .		0
65	Fiber Optic Sensors Based on Nanostructured Materials. Springer Series in Surface Sciences, 2015, , 277-299.	0.3	0
66	Optical Fiber Exhaled Breath Sensor Based on Lossy Mode Resonance Using a Graphene Oxide Sensitive Coating. Proceedings (mdpi), 2017, 1 , .	0.2	0
67	STUDY OF SUPERHYDROPHILIC NANOPARTICLE-BASED ULTRA-THIN FILMS TOWARDS THE DEVELOPMENT OF OPTICAL FIBER HUMIDITY SENSORS. International Journal on Smart Sensing and Intelligent Systems, 2009, 2, 63-74.	0.4	0
68	Optical fiber refractometers with response in the visible spectral region by means ITO coatings. Optica Pura Y Aplicada, 2012, 45, 183-187.	0.0	0
69	Fiber optic sensors based on lossy mode resonances. , 2014, , .		0