
## Kentaro Kutsukake

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1378774/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Generation mechanism of dislocations during directional solidification of multicrystalline silicon using artificially designed seed. Journal of Crystal Growth, 2010, 312, 897-901.                               | 1.5 | 96        |
| 2  | Formation mechanism of a faceted interface: <i>In situ</i> observation of the Si(100) crystal-melt interface during crystal growth. Physical Review B, 2009, 80, .                                                | 3.2 | 52        |
| 3  | Control of Grain Boundary Propagation in Mono-Like Si: Utilization of Functional Grain Boundaries.<br>Applied Physics Express, 2013, 6, 025505.                                                                   | 2.4 | 50        |
| 4  | Mono-Like Silicon Growth Using Functional Grain Boundaries to Limit Area of Multicrystalline<br>Grains. IEEE Journal of Photovoltaics, 2014, 4, 84-87.                                                            | 2.5 | 48        |
| 5  | Relationship between grain boundary structures in Si multicrystals and generation of dislocations during crystal growth. Journal of Applied Physics, 2010, 107, .                                                 | 2.5 | 46        |
| 6  | Arrangement of dendrite crystals grown along the bottom of Si ingots using the dendritic casting<br>method by controlling thermal conductivity under crucibles. Journal of Crystal Growth, 2011, 319,<br>13-18.   | 1.5 | 46        |
| 7  | Growth of multicrystalline Si ingots using noncontact crucible method for reduction of stress.<br>Journal of Crystal Growth, 2012, 344, 6-11.                                                                     | 1.5 | 42        |
| 8  | Microstructures of Si multicrystals and their impact on minority carrier diffusion length. Acta<br>Materialia, 2009, 57, 3268-3276.                                                                               | 7.9 | 39        |
| 9  | Growth of high-quality multicrystalline Si ingots using noncontact crucible method. Journal of<br>Crystal Growth, 2012, 355, 38-45.                                                                               | 1.5 | 34        |
| 10 | Growth of multicrystalline Si with controlled grain boundary configuration by the floating zone technique. Journal of Crystal Growth, 2005, 280, 419-424.                                                         | 1.5 | 30        |
| 11 | Three-dimensional evaluation of gettering ability of $\hat{1}$ £3{111} grain boundaries in silicon by atom probe tomography combined with transmission electron microscopy. Applied Physics Letters, 2013, 103, . | 3.3 | 28        |
| 12 | Quantitative analysis of subgrain boundaries in Si multicrystals and their impact on electrical properties and solar cell performance. Journal of Applied Physics, 2009, 105, 044909.                             | 2.5 | 27        |
| 13 | Formation mechanism of twin boundaries during crystal growth of silicon. Scripta Materialia, 2011,<br>65, 556-559.                                                                                                | 5.2 | 27        |
| 14 | Growth of Si single bulk crystals with low oxygen concentrations by the noncontact crucible<br>method using silica crucibles without Si3N4 coating. Journal of Crystal Growth, 2013, 372, 121-128.                | 1.5 | 26        |
| 15 | Recombination activity of nickel, copper, and oxygen atoms segregating at grain boundaries in mono-like silicon crystals. Applied Physics Letters, 2016, 109, .                                                   | 3.3 | 24        |
| 16 | Generation mechanism of dislocations and their clusters in multicrystalline silicon during two-dimensional growth. Journal of Applied Physics, 2011, 110, 083530.                                                 | 2.5 | 23        |
| 17 | Nanoindentation measurements of a highly oriented wurtzite-type boron nitride bulk crystal. Japanese<br>Journal of Applied Physics, 2017, 56, 030301.                                                             | 1.5 | 22        |
| 18 | Adaptive process control for crystal growth using machine learning for high-speed prediction: application to SiC solution growth. CrystEngComm, 2021, 23, 1982-1990.                                              | 2.6 | 22        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | On the origin of strain fluctuation in strained-Si grown on SiGe-on-insulator and SiGe virtual substrates. Applied Physics Letters, 2004, 85, 1335-1337.                                                                  | 3.3 | 21        |
| 20 | Influence of structural imperfection of $\hat{1}$ ±5 grain boundaries in bulk multicrystalline Si on their electrical activities. Journal of Applied Physics, 2007, 101, 063509.                                          | 2.5 | 20        |
| 21 | Implementation of faceted dendrite growth on floating cast method to realize high-quality multicrsytalline Si ingot for solar cells. Journal of Applied Physics, 2011, 109, .                                             | 2.5 | 20        |
| 22 | Geometrical design of a crystal growth system guided by a machine learning algorithm.<br>CrystEngComm, 2021, 23, 2695-2702.                                                                                               | 2.6 | 20        |
| 23 | Modification of Local Structure and Its Influence on Electrical Activity of Near (310) Σ5 Grain<br>Boundary in Bulk Silicon. Materials Transactions, 2007, 48, 143-147.                                                   | 1.2 | 18        |
| 24 | Nanoscopic mechanism of Cu precipitation at small-angle tilt boundaries in Si. Physical Review B, 2015, 91, .                                                                                                             | 3.2 | 18        |
| 25 | Impact of local atomic stress on oxygen segregation at tilt boundaries in silicon. Applied Physics<br>Letters, 2017, 110, .                                                                                               | 3.3 | 17        |
| 26 | Computational Investigation of Relationship between Shear Stress and Multicrystalline Structure in Silicon. Japanese Journal of Applied Physics, 2010, 49, 04DP01.                                                        | 1.5 | 16        |
| 27 | Modeling of incorporation of oxygen and carbon impurities into multicrystalline silicon ingot during one-directional growth. Journal of Crystal Growth, 2012, 352, 173-176.                                               | 1.5 | 16        |
| 28 | Adaptive Bayesian optimization for epitaxial growth of Si thin films under various constraints.<br>Materials Today Communications, 2020, 25, 101538.                                                                      | 1.9 | 16        |
| 29 | Realization of Bulk Multicrystalline Silicon with Controlled Grain Boundaries by Utilizing<br>Spontaneous Modification of Grain Boundary Configuration. Japanese Journal of Applied Physics,<br>2006, 45, 1734-1737.      | 1.5 | 15        |
| 30 | 3D visualization and analysis of dislocation clusters in multicrystalline silicon ingot by approach of data science. Solar Energy Materials and Solar Cells, 2019, 189, 239-244.                                          | 6.2 | 15        |
| 31 | Application of Bayesian optimization for improved passivation performance in TiO <sub> x<br/></sub> /SiO <sub> y </sub> /c-Si heterostructure by hydrogen plasma treatment. Applied Physics Express,<br>2021, 14, 025503. | 2.4 | 15        |
| 32 | Real-time prediction of interstitial oxygen concentration in Czochralski silicon using machine<br>learning. Applied Physics Express, 2020, 13, 125502.                                                                    | 2.4 | 15        |
| 33 | Structural Origin of a Cluster of Bright Spots in Reverse Bias Electroluminescence Image of Solar<br>Cells Based on Si Multicrystals. Applied Physics Express, 2008, 1, 075001.                                           | 2.4 | 14        |
| 34 | Dislocation structure in AlN films induced by in situ transmission electron microscope nanoindentation. Journal of Applied Physics, 2012, 112, 093526.                                                                    | 2.5 | 14        |
| 35 | Three-dimensional evaluation of gettering ability for oxygen atoms at small-angle tilt boundaries in<br>Czochralski-grown silicon crystals. Applied Physics Letters, 2015, 106, .                                         | 3.3 | 14        |
| 36 | Characterization of silicon ingots: Mono-like versus high-performance multicrystalline. Japanese<br>Journal of Applied Physics, 2015, 54, 08KD10.                                                                         | 1.5 | 14        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Application of artificial neural network to optimize sensor positions for accurate monitoring: an example with thermocouples in a crystal growth furnace. Applied Physics Express, 2019, 12, 125503.                    | 2.4 | 14        |
| 38 | Pattern formation mechanism of a periodically faceted interface during crystallization ofSi. Journal of Crystal Growth, 2010, 312, 3670-3674.                                                                           | 1.5 | 13        |
| 39 | Nanoscopic analysis of oxygen segregation at tilt boundaries in silicon ingots using atom probe tomography combined with TEM and <i>ab initio</i> calculations. Journal of Microscopy, 2017, 268, 230-238.              | 1.8 | 13        |
| 40 | Modification of local structures in multicrystals revealed by spatially resolved x-ray rocking curve analysis. Journal of Applied Physics, 2007, 102, 103504.                                                           | 2.5 | 12        |
| 41 | Elastic properties of indium nitrides grown on sapphire substrates determined by nano-indentation: In comparison with other nitrides. AIP Advances, 2015, 5, .                                                          | 1.3 | 12        |
| 42 | Impact of Defect Density in Si Bulk Multicrystals on Gettering Effect of Impurities. Japanese Journal of Applied Physics, 2008, 47, 8790-8792.                                                                          | 1.5 | 11        |
| 43 | Fabrication of SiGe-on-insulator by rapid thermal annealing of Ge on Si-on-insulator substrate.<br>Applied Surface Science, 2004, 224, 95-98.                                                                           | 6.1 | 10        |
| 44 | Data-Driven Optimization and Experimental Validation for the Lab-Scale Mono-Like Silicon Ingot<br>Growth by Directional Solidification. ACS Omega, 2022, 7, 6665-6673.                                                  | 3.5 | 10        |
| 45 | Floating Zone Growth of Si Bicrystals Using Seed Crystals with Artificially Designed Grain Boundary<br>Configuration. Japanese Journal of Applied Physics, 2005, 44, L778-L780.                                         | 1.5 | 9         |
| 46 | Fabrication of SiGe-on-Insulator through Thermal Diffusion of Ge on Si-on-Insulator Substrate.<br>Japanese Journal of Applied Physics, 2003, 42, L232-L234.                                                             | 1.5 | 8         |
| 47 | Growth behavior of faceted Si crystals at grain boundary formation. Journal of Crystal Growth, 2009, 312, 19-23.                                                                                                        | 1.5 | 8         |
| 48 | Determination of carrier recombination velocity at inclined grain boundaries in multicrystalline<br>silicon through photoluminescence imaging and carrier simulation. Journal of Applied Physics, 2020,<br>128, 125103. | 2.5 | 8         |
| 49 | Transmission behavior of dislocations against Σ3 twin boundaries in Si. Journal of Applied Physics, 2020, 127, .                                                                                                        | 2.5 | 8         |
| 50 | Generation of dislocation clusters at triple junctions of random angle grain boundaries during cast growth of silicon ingots. Applied Physics Express, 2020, 13, 105505.                                                | 2.4 | 8         |
| 51 | Application of Bayesian optimization for high-performance TiO /SiO /c-Si passivating contact. Solar<br>Energy Materials and Solar Cells, 2021, 230, 111251.                                                             | 6.2 | 7         |
| 52 | Origin of recombination activity of non-coherent Σ3{111} grain boundaries with a positive deviation in the tilt angle in cast-grown silicon ingots. Applied Physics Express, 2021, 14, 011002.                          | 2.4 | 7         |
| 53 | Effect of grain boundary character of multicrystalline Si on external and internal (phosphorus) gettering of impurities. Progress in Photovoltaics: Research and Applications, 2016, 24, 1615-1625.                     | 8.1 | 6         |
| 54 | Mechanical Properties of Cubicâ€BN(111) Bulk Single Crystal Evaluated by Nanoindentation. Physica<br>Status Solidi (B): Basic Research, 2018, 255, 1700473.                                                             | 1.5 | 6         |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                            | IF                                                                    | CITATIONS                                            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------|
| 55 | Insight into physical processes controlling the mechanical properties of the wurtzite group-III nitride family. Journal of Crystal Growth, 2018, 500, 23-27.                                                                                                                                                                                                                                                                                       | 1.5                                                                   | 6                                                    |
| 56 | Interstitial oxygen behavior for thermal double donor formation in germanium: Infrared absorption studies. Journal of Applied Physics, 2013, 113, 073501.                                                                                                                                                                                                                                                                                          | 2.5                                                                   | 5                                                    |
| 57 | Interaction of sodium atoms with stacking faults in silicon with different Fermi levels. Applied Physics Express, 2018, 11, 061303.                                                                                                                                                                                                                                                                                                                | 2.4                                                                   | 5                                                    |
| 58 | Virtual experiments of Czochralski growth of silicon using machine learning: Influence of processing parameters on interstitial oxygen concentration. Journal of Crystal Growth, 2022, 584, 126580.                                                                                                                                                                                                                                                | 1.5                                                                   | 5                                                    |
| 59 | Application of weighted Voronoi diagrams to analyze nucleation sites of multicrystalline silicon ingots. Journal of Crystal Growth, 2018, 499, 62-66.                                                                                                                                                                                                                                                                                              | 1.5                                                                   | 4                                                    |
| 60 | Effects of grain boundary structure and shape of the solid–liquid interface on the growth direction of the grain boundaries in multicrystalline silicon. CrystEngComm, 2022, 24, 1948-1954.                                                                                                                                                                                                                                                        | 2.6                                                                   | 4                                                    |
| 61 | Growth of SiGe-on-insulator and its application as a substrate for epitaxy of strained-Si layer. Journal of Crystal Growth, 2005, 275, e1203-e1207.                                                                                                                                                                                                                                                                                                | 1.5                                                                   | 3                                                    |
| 62 | Control of strain status in SiGe thin film by epitaxial growth on Si with buried porous layer. Applied<br>Physics Letters, 2007, 90, 031915.                                                                                                                                                                                                                                                                                                       | 3.3                                                                   | 3                                                    |
| 63 | Influence of growth temperature and cooling rate on the growth of Si epitaxial layer by dropping-type<br>liquid phase epitaxy from the pure Si melt. Journal of Crystal Growth, 2008, 310, 5248-5251.<br>Slip systems in wurtzite ZnO activated by Vickers indentation on <mml:math< td=""><td>1.5</td><td>3</td></mml:math<>                                                                                                                      | 1.5                                                                   | 3                                                    |
| 64 | xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0011.gif"<br>overflow="scroll"> <mml:mo>{</mml:mo> 22 <mml:mover<br>accent="true"&gt;<mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mo>Â<sup>-</sup></mml:mo>accent="true"&gt;<mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mo>Â<sup>-</sup></mml:mo><td>nrow&gt;<td>ıml:mover&gt;<m<br>ıml:mover&gt;<m< td=""></m<></m<br></td></td></mml:mrow></mml:mrow></mml:mover<br> | nrow> <td>ıml:mover&gt;<m<br>ıml:mover&gt;<m< td=""></m<></m<br></td> | ıml:mover> <m<br>ıml:mover&gt;<m< td=""></m<></m<br> |
| 65 | and                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                      |

| #  | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Direct prediction of electrical properties of grain boundaries from photoluminescence profiles using machine learning. Applied Physics Letters, 2021, 119, .                                                                                                                              | 3.3 | 2         |
| 74 | Fundamental Understanding of Subgrain Boundaries. Advances in Materials Research, 2009, , 83-95.                                                                                                                                                                                          | 0.2 | 2         |
| 75 | Growth of Crystalline Silicon for Solar Cells: Mono-Like Method. , 2018, , 1-20.                                                                                                                                                                                                          |     | 2         |
| 76 | Growth of multicrystalline Si ingots for solar cells using noncontact crucible method without touching the crucible wall. , 2012, , .                                                                                                                                                     |     | 1         |
| 77 | Nanoindentation hardness and elastic modulus of AlGaN alloys. , 2013, , .                                                                                                                                                                                                                 |     | 1         |
| 78 | Distribution of light-element impurities in Si crystals grown by seed-casting method. Japanese Journal of Applied Physics, 2018, 57, 08RB19.                                                                                                                                              | 1.5 | 1         |
| 79 | Occurrence Prediction of Dislocation Regions in Photoluminescence Image of Multicrystalline<br>Silicon Wafers Using Transfer Learning of Convolutional Neural Network. IEICE Transactions on<br>Fundamentals of Electronics, Communications and Computer Sciences, 2021, E104.A, 857-865. | 0.3 | 1         |
| 80 | Growth of Crystalline Silicon for Solar Cells: Mono-Like Method. , 2019, , 215-234.                                                                                                                                                                                                       |     | 1         |
| 81 | Spontaneous Modification of Grain Boundary Configuration and its Application for Realization of Bulk Multicrystalline Si with Electrically Inactive Grain Boundaries. , 2006, , .                                                                                                         |     | 0         |
| 82 | ã,•ãfªã,³ãf³ãfãf«ã,¯åğçµæ™¶ã®ç²'界å^¶å¾¡ã«å'ãíã┥. Materia Japan, 2006, 45, 720-724.                                                                                                                                                                                                        | 0.1 | 0         |
| 83 | Formation mechanism of twin boundaries in silicon multicrystals during crystal growth. , 2010, , .                                                                                                                                                                                        |     | 0         |
| 84 | Growth of Si single bulk crystals inside Si melts by the noncontact crucible method using silica<br>crucibles without coating Si <inf>3</inf> N <inf>4</inf> particles. , 2013, , .                                                                                                       |     | 0         |
| 85 | (Invited) Application of Machine Learning for High-Performance Multicrystalline Materials. ECS<br>Transactions, 2021, 102, 11-16.                                                                                                                                                         | 0.5 | 0         |
| 86 | Structural properties of triple junctions acting as dislocation sources in high-performance Si ingots. , 2020, , .                                                                                                                                                                        |     | 0         |
| 87 | A Transfer Learningâ€Based Method for Facilitating theÂPrediction of Unsteady Crystal Growth.<br>Advanced Theory and Simulations, 0 _ 2200204                                                                                                                                             | 2.8 | 0         |