
Richard D Norris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/137852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science, 2010, 327, 1214-1218.	6.0	1,140
2	Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology, 2002, 30, 123.	2.0	595
3	Formation of the Isthmus of Panama. Science Advances, 2016, 2, e1600883.	4.7	565
4	Evolution of middle to Late Cretaceous oceans—A 55 m.y. record of Earth's temperature and carbon cycle. Geology, 2012, 40, 107-110.	2.0	422
5	Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature, 2001, 412, 425-429.	13.7	358
6	Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. Nature, 2017, 548, 573-577.	13.7	277
7	Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology, 2002, 30, 607.	2.0	266
8	Isotopic Evidence for Glaciation During the Cretaceous Supergreenhouse. Science, 2008, 319, 189-192.	6.0	238
9	Local Stressors Reduce Coral Resilience to Bleaching. PLoS ONE, 2009, 4, e6324.	1.1	236
10	Eocene global warming events driven by ventilation of oceanic dissolved organic carbon. Nature, 2011, 471, 349-352.	13.7	236
11	A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2concentrations. Paleoceanography, 2006, 21, n/a-n/a.	3.0	224
12	Jiggling the tropical thermostat in the Cretaceous hothouse. Geology, 2002, 30, 299.	2.0	184
13	On impact and volcanism across the Cretaceous-Paleogene boundary. Science, 2020, 367, 266-272.	6.0	178
14	Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera. Paleobiology, 1996, 22, 461-480.	1.3	169
15	Pelagic species diversity, biogeography, and evolution. Paleobiology, 2000, 26, 236-258.	1.3	167
16	Possible atmospheric CO2extremes of the Middle Cretaceous (late Albian-Turonian). Paleoceanography, 2002, 17, 22-1-22-17.	3.0	114
17	Morphological recognition of cryptic species in the planktonic foraminifer Orbulina universa. Marine Micropaleontology, 2009, 71, 148-165.	0.5	108
18	Centuryâ€scale records of coral growth rates indicate that local stressors reduce coral thermal tolerance threshold. Global Change Biology, 2010, 16, 1247-1257.	4.2	107

RICHARD D NORRIS

#	Article	IF	CITATIONS
19	A high-resolution marine 1870s/1880s record for the late Maastrichtian: Distinguishing the chemical fingerprints of Deccan volcanism and the KP impact event. Earth and Planetary Science Letters, 2009, 281, 159-168.	1.8	100
20	Persistence of carbon release events through the peak of early Eocene global warmth. Nature Geoscience, 2014, 7, 748-751.	5.4	95
21	Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ180 record at Deep Sea Drilling Project Site 511. Paleoceanography, 2003, 18, n/a-n/a.	3.0	94
22	Testing the Cenozoic multisite composite δ18O and δ13C curves: New monospecific Eocene records from a single locality, Demerara Rise (Ocean Drilling Program Leg 207). Paleoceanography, 2006, 21, n/a-n/a.	3.0	88
23	An abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene–Eocene Thermal Maximum. Nature Geoscience, 2016, 9, 575-580.	5.4	73
24	Prehistorical and historical declines in Caribbean coral reef accretion rates driven by loss of parrotfish. Nature Communications, 2017, 8, 14160.	5.8	66
25	What is gradualism? Cryptic speciation in globorotaliid foraminifera. Paleobiology, 1996, 22, 386-405.	1.3	66
26	A role for chance in marine recovery from the end-Cretaceous extinction. Nature Geoscience, 2011, 4, 856-860.	5.4	65
27	Diverse patterns of ocean export productivity change across the Cretaceousâ€Paleogene boundary: New insights from biogenic barium. Paleoceanography, 2011, 26, .	3.0	59
28	New Age of Fishes initiated by the Cretaceousâ^'Paleogene mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8537-8542.	3.3	58
29	Role of photosymbiosis and biogeography in the diversification of early Paleogene acarininids (planktonic foraminifera). Paleobiology, 2001, 27, 311-326.	1.3	56
30	Size-related stable isotope changes in Late Cretaceous planktic foraminifera: Implications for paleoecology and photosymbiosis. Marine Micropaleontology, 2007, 65, 32-42.	0.5	55
31	The temporal dimension of marine speciation. Evolutionary Ecology, 2012, 26, 393-415.	0.5	52
32	Evidence for abrupt speciation in a classic case of gradual evolution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21224-21229.	3.3	42
33	Evolutionary trends in coiling of tropical Paleogene planktic foraminifera. Paleobiology, 2001, 27, 327-347.	1.3	39
34	Resilience of Pacific pelagic fish across the Cretaceous/Palaeogene mass extinction. Nature Geoscience, 2014, 7, 667-670.	5.4	35
35	Eighty-five million years of Pacific Ocean gyre ecosystem structure: long-term stability marked by punctuated change. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160189.	1.2	26
36	Sliding Rocks on Racetrack Playa, Death Valley National Park: First Observation of Rocks in Motion. PLoS ONE, 2014, 9, e105948.	1.1	25

RICHARD D NORRIS

#	Article	IF	CITATIONS
37	Seasonality and depth distribution of a mesopelagic foraminifer, <i>Hastigerinella digitata</i> , in Monterey Bay, California. Limnology and Oceanography, 2011, 56, 562-576.	1.6	23
38	Millennialâ€scale change in the structure of a Caribbean reef ecosystem and the role of human and natural disturbance. Ecography, 2020, 43, 283-293.	2.1	23
39	Cyclic changes in Turonian to Coniacian planktic foraminiferal assemblages from the tropical Atlantic Ocean. Marine Micropaleontology, 2008, 68, 299-313.	0.5	22
40	Two pulses of morphological diversification in Pacific pelagic fishes following the Cretaceous–Palaeogene mass extinction. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181194.	1.2	22
41	Classification of remote Pacific coral reefs by physical oceanographic environment. Journal of Geophysical Research, 2012, 117, .	3.3	21
42	Paleo-diatom composition from Santa Barbara Basin deep-sea sediments: a comparison of <i>18S-V9</i> and <i>diat-rbcL</i> metabarcoding vs shotgun metagenomics. ISME Communications, 2021, 1, .	1.7	18
43	Integrating satellite observations and modern climate measurements with the recent sedimentary record: An example from Southeast Alaska. Journal of Geophysical Research: Oceans, 2013, 118, 3444-3461.	1.0	17
44	Response—Cretaceous Extinctions. Science, 2010, 328, 975-976.	6.0	16
45	A 3000 year record of Caribbean reef urchin communities reveals causes and consequences of longâ€ŧerm decline in <i>Diadema antillarum</i> . Ecography, 2018, 41, 164-173.	2.1	16
46	A Neolithic mega-tsunami event in the eastern Mediterranean: Prehistoric settlement vulnerability along the Carmel coast, Israel. PLoS ONE, 2020, 15, e0243619.	1.1	15
47	Dermal denticle assemblages in coral reef sediments correlate with conventional shark surveys. Methods in Ecology and Evolution, 2020, 11, 362-375.	2.2	12
48	The last 1 million years of the extinct genus Discoaster: Plio–Pleistocene environment and productivity at Site U1476 (Mozambique Channel). Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505, 187-197.	1.0	10
49	Photosymbiosis in planktonic foraminifera across the Paleocene–Eocene thermal maximum. Paleobiology, 0, , 1-16.	1.3	10
50	Changing environments and human interaction during the Pleistocene–Early Holocene from the shallow coastal area of Dor, Israel. Quaternary Research, 2022, 105, 64-81.	1.0	9
51	Quantitative visual analysis of marine barite microcrystals: Insights into precipitation and dissolution dynamics. Limnology and Oceanography, 2021, 66, 3619-3629.	1.6	7
52	Stable isotope and ecological habitat of planktonic foraminifera adjacent to the ice edge in the western Weddell Sea. Geosciences Journal, 1998, 2, 88-98.	0.6	6
53	59.2 Ma and 56.5 Ma: Two significant moments in the evolution of acarininids (planktonic) Tj ETQq1 1 0.78431	4 rgBT /Ov .4	verlock 10 T
54	Shallow-marine ostracode turnover during the Eocene–Oligocene transition in Mississippi, the Gulf Coast Plain, USA. Marine Micropaleontology, 2014, 106, 10-21.	0.5	6

RICHARD D NORRIS

#	Article	IF	CITATIONS
55	No state change in pelagic fish production and biodiversity during the Eocene–Oligocene transition. Nature Geoscience, 2020, 13, 238-242.	5.4	6
56	Hydrographic and Tectonic Control of Plankton Distribution and Evolution. , 1999, , 173-193.		6
57	Upwelling in the late middle Eocene at Blake Nose?. Gff, 2000, 122, 174-175.	0.4	3
58	Changes in tropical Atlantic surface-water environments inferred from late Albian planktic foraminiferal assemblages (ODP Site 1258, Demerara Rise). Cretaceous Research, 2018, 87, 74-83.	0.6	2
59	Threshold Decline in Mesoamerican Coral Growth and Resiliency. Nature Precedings, 2008, , .	0.1	1
60	Whump, Slosh, Slosh, Slosh—Filling the Crater That Did in the Dinosaurs. AGU Advances, 2020, 1, e2020AV000306.	2.3	1
61	Distinct population histories among three unique species of oceanic skaters Halobates Eschscholtz, 1822 (Hemiptera: Heteroptera: Gerridae) in the Eastern Pacific Ocean. Marine Biology, 2021, 168, 1.	0.7	1
62	Diversification of Paleocene Plantic Foraminifera after the Cretaceous-Paleocene Extinction. The Paleontological Society Special Publications, 1996, 8, 292-292.	0.0	0
63	Isotope Paleobiology and Paleoecology: So Why <i>Should</i> Paleontologists Care About Geochemistry?. The Paleontological Society Papers, 1998, 4, 1-6.	0.8	0
64	Otherworldly Earths: The Future of Deep Time Research. Eos, 2011, 92, 55-55.	0.1	0
65	An Increase in Complexity of Pelagic Fish Community Structure Following the Cretaceous-Paleogene Mass Extinction. The Paleontological Society Special Publications, 2014, 13, 139-139.	0.0	Ο
66	Fish Like Anoxia: Ichthyolith Production Repeatedly Increases During Mediterranean Sapropel Events. The Paleontological Society Special Publications, 2014, 13, 138-138.	0.0	0
67	Fishy Increase of Icthyoliths Throughout the Oligocene Suggests Marine Cooling Facilitated Bony Fish Population Expansion. The Paleontological Society Special Publications, 2014, 13, 138-139.	0.0	0
68	†Bleaching' of Photosymbionts in Planktic Foraminifera During the Middle Eocene Climatic Optimum. The Paleontological Society Special Publications, 2014, 13, 141-141.	0.0	0
69	Title is missing!. , 2020, 15, e0243619.		0
70	Title is missing!. , 2020, 15, e0243619.		0
71	Title is missing!. , 2020, 15, e0243619.		0
72	Title is missing!. , 2020, 15, e0243619.		0

5