Haoyu Fu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1378428/haoyu-fu-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

125	12, 002 citations	60	108
papers		h-index	g-index
125	13,555	12.4	6.93
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
125	Interphases, Interfaces, and Surfaces of Active Materials in Rechargeable Batteries and Perovskite Solar Cells. <i>Advanced Materials</i> , 2021 , 33, e1905245	24	18
124	Enhancing sodium-ion storage performance of MoO2/N-doped carbon through interfacial Mo-N-C bond. <i>Science China Materials</i> , 2021 , 64, 85-95	7.1	24
123	Sodium ion storage performance and mechanism in orthorhombic V2O5 single-crystalline nanowires. <i>Science China Materials</i> , 2021 , 64, 557-570	7.1	13
122	Nanostructured manganese dioxide with adjustable Mn3+/Mn4+ ratio for flexible high-energy quasi-solid supercapacitors. <i>Chemical Engineering Journal</i> , 2020 , 396, 125342	14.7	20
121	Rational design of the pea-pod structure of SiOx/C nanofibers as a high-performance anode for lithium ion batteries. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 1762-1769	6.8	11
120	In-situ fabrication of P3HT passivating layer with hole extraction ability for enhanced performance of perovskite solar cell. <i>Chemical Engineering Journal</i> , 2020 , 402, 126152	14.7	18
119	Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. <i>Progress in Materials Science</i> , 2020 , 111, 100655	42.2	42
118	Surface-defect passivation through complexation with organic molecules leads to enhanced power conversion efficiency and long term stability of perovskite photovoltaics. <i>Science China Materials</i> , 2020 , 63, 479-480	7.1	7
117	Controlled crystallinity and morphologies of 2D Ruddlesden-Popper perovskite films grown without anti-solvent for solar cells. <i>Chemical Engineering Journal</i> , 2020 , 394, 124959	14.7	14
116	Carbon quantum dot modified Na3V2(PO4)2F3 as a high-performance cathode material for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 18872-18879	13	25
115	Dual interface coupled molybdenum diselenide for high-performance sodium ion batteries and capacitors. <i>Journal of Power Sources</i> , 2020 , 446, 227298	8.9	18
114	Boosting the cycling stability of hydrated vanadium pentoxide by Y3+ pillaring for sodium-ion batteries. <i>Materials Today Energy</i> , 2019 , 11, 218-227	7	22
113	Necklace-like Si@C nanofibers as robust anode materials for high performance lithium ion batteries. <i>Science Bulletin</i> , 2019 , 64, 261-269	10.6	45
112	Interface Engineering V O Nanofibers for High-Energy and Durable Supercapacitors. <i>Small</i> , 2019 , 15, e1901747	11	36
111	Towards a durable high performance anode material for lithium storage: stabilizing N-doped carbon encapsulated FeS nanosheets with amorphous TiO2. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 16541-16552	13	16
110	Revealing the impacts of metastable structure on the electrochemical properties: The case of MnS. <i>Journal of Power Sources</i> , 2019 , 431, 75-83	8.9	12
109	Sulfur-deficient MoS2 grown inside hollow mesoporous carbon as a functional polysulfide mediator. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 12068-12074	13	77

(2018-2019)

108	Enhanced-performance of self-powered flexible quantum dot photodetectors by a double hole transport layer structure. <i>Nanoscale</i> , 2019 , 11, 9626-9632	7.7	12
107	High mass loading Ni-decorated Co9S8 with enhanced electrochemical performance for flexible quasi-solid-state asymmetric supercapacitors. <i>Journal of Power Sources</i> , 2019 , 423, 106-114	8.9	26
106	Microbelt Doid in icrobelt-structured SnO2@C as an advanced electrode with outstanding rate capability and high reversibility. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 10523-10533	13	19
105	Tailoring Energy and Power Density through Controlling the Concentration of Oxygen Vacancies in VO/PEDOT Nanocable-Based Supercapacitors. <i>ACS Applied Materials & District Research</i> , 11, 16647-	16655	34
104	Oxygen-deficient titanium dioxide as a functional host for lithium Bulfur batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 10346-10353	13	74
103	SnS Nanosheets Confined Growth by S and N Codoped Graphene with Enhanced Pseudocapacitance for Sodium-Ion Capacitors. <i>ACS Applied Materials & District Research State (Materials & District Research Res</i>	49: 5 73	45
102	Engineering Halide Perovskite Crystals through Precursor Chemistry. <i>Small</i> , 2019 , 15, e1903613	11	47
101	Electrocatalytic oxygen reduction reaction activity of KOH etched carbon films as metal-free cathodic catalysts for fuel cells <i>RSC Advances</i> , 2019 , 9, 2803-2811	3.7	2
100	Covalent organic framework-regulated ionic transportation for high-performance lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26540-26548	13	31
99	Amorphous NiWO4 Nanospheres with High-Conductivity and -Capacitive Performance for Supercapacitors. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 30067-30076	3.8	10
98	From scalable solution fabrication of perovskite films towards commercialization of solar cells. <i>Energy and Environmental Science</i> , 2019 , 12, 518-549	35.4	192
97	Facile fabrication of interconnected-mesoporous T-Nb2O5 nanofibers as anodes for lithium-ion batteries. <i>Science China Materials</i> , 2019 , 62, 465-473	7.1	23
96	MoSe2 nanosheets perpendicularly grown on graphene with MoII bonding for sodium-ion capacitors. <i>Nano Energy</i> , 2018 , 47, 224-234	17.1	270
95	Heterogeneous NiS/NiO multi-shelled hollow microspheres with enhanced electrochemical performances for hybrid-type asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9153-9160	13	76
94	Phosphorized SnO2/graphene heterostructures for highly reversible lithium-ion storage with enhanced pseudocapacitance. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 3479-3487	13	96
93	Fabrication of tunable aluminum nanodisk arrays via a self-assembly nanoparticle template method and their applications for performance enhancement in organic photovoltaics. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 3649-3658	13	7
92	Reversible and fast Na-ion storage in MoO2/MoSe2 heterostructures for high energy-high power Na-ion capacitors. <i>Energy Storage Materials</i> , 2018 , 12, 241-251	19.4	94
91	Self-templating synthesis of double-wall shelled vanadium oxide hollow microspheres for high-performance lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6792-6799	13	26

90	Facile one-step fabrication of CdS0.12Se0.88 quantum dots with a ZnSe/ZnS-passivation layer for highly efficient quantum dot sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 9866-9873	13	30
89	Twin-nanoplate assembled hierarchical Ni/MnO porous microspheres as advanced anode materials for lithium-ion batteries. <i>Electrochimica Acta</i> , 2018 , 259, 419-426	6.7	17
88	Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. <i>Energy Storage Materials</i> , 2018 , 11, 205-259	19.4	157
87	Tubular MoO2 organized by 2D assemblies for fast and durable alkali-ion storage. <i>Energy Storage Materials</i> , 2018 , 11, 161-169	19.4	54
86	A low crystallinity oxygen-vacancy-rich Co3O4 cathode for high-performance flexible asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16094-16100	13	122
85	Synergistic combination of semiconductor quantum dots and organic-inorganic halide perovskites for hybrid solar cells. <i>Coordination Chemistry Reviews</i> , 2018 , 374, 279-313	23.2	39
84	Mechanism of cycling degradation and strategy to stabilize a nickel-rich cathode. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16149-16163	13	66
83	Carbon fabric supported 3D cobalt oxides/hydroxide nanosheet network as cathode for flexible all-solid-state asymmetric supercapacitor. <i>Dalton Transactions</i> , 2018 , 47, 11503-11511	4.3	23
82	Monolayer-like hybrid halide perovskite films prepared by additive engineering without antisolvents for solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 15386-15394	13	35
81	Encapsulation of CoS Nanocrystals into N/S Co-Doped Honeycomb-Like 3D Porous Carbon for High-Performance Lithium Storage. <i>Advanced Science</i> , 2018 , 5, 1800829	13.6	121
80	Synergistic coupling of lamellar MoSe2 and SnO2 nanoparticles via chemical bonding at interface for stable and high-power sodium-ion capacitors. <i>Chemical Engineering Journal</i> , 2018 , 354, 1164-1173	14.7	48
79	Surface Engineering of Quantum Dots for Remarkably High Detectivity Photodetectors. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 3285-3294	6.4	28
78	High-Voltage-Efficiency Inorganic Perovskite Solar Cells in a Wide Solution-Processing Window. Journal of Physical Chemistry Letters, 2018 , 9, 3646-3653	6.4	54
77	Nearly monodisperse PbS quantum dots for highly efficient solar cells: an in situ seeded ion exchange approach. <i>Chemical Communications</i> , 2018 , 54, 12598-12601	5.8	14
76	Three-Dimensional Carbon-Coated Treelike NiS Superstructures on a Nickel Foam as Binder-Free Bifunctional Electrodes. <i>ACS Applied Materials & Discrete Mate</i>	9.5	34
75	Repairing Defects of Halide Perovskite Films To Enhance Photovoltaic Performance. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 37005-37013	9.5	34
74	S-doped porous carbon confined SnS nanospheres with enhanced electrochemical performance for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18286-18292	13	51
73	Flexible all-solid-state ultrahigh-energy asymmetric supercapacitors based on tailored morphology of NiCoO2/Ni(OH)2/Co(OH)2 electrodes. <i>CrystEngComm</i> , 2018 , 20, 6519-6528	3.3	12

72	In situ formation of porous graphitic carbon wrapped MnO/Ni microsphere networks as binder-free anodes for high-performance lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 12316-123	322	20
71	Impacts of Mn ion in ZnSe passivation on electronic band structure for high efficiency CdS/CdSe quantum dot solar cells. <i>Dalton Transactions</i> , 2018 , 47, 9634-9642	4.3	10
70	Self-supported binder-free carbon fibers/MnO 2 electrodes derived from disposable bamboo chopsticks for high-performance supercapacitors. <i>Journal of Alloys and Compounds</i> , 2017 , 699, 126-135	5.7	49
69	Self-templated synthesis of N-doped CoSe2/C double-shelled dodecahedra for high-performance supercapacitors. <i>Energy Storage Materials</i> , 2017 , 8, 28-34	19.4	77
68	Continuous Size Tuning of Monodispersed ZnO Nanoparticles and Its Size Effect on the Performance of Perovskite Solar Cells. <i>ACS Applied Materials & Company Company Company</i> , 9, 9785-9794	9.5	38
67	Walnut-like Porous Core/Shell TiO with Hybridized Phases Enabling Fast and Stable Lithium Storage. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 10652-10663	9.5	145
66	Enhanced storage of sodium ions in Prussian blue cathode material through nickel doping. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9604-9610	13	66
65	Nanoporous carbon leading to the high performance of a Na3V2O2(PO4)2F@carbon/graphene cathode in a sodium ion battery. <i>CrystEngComm</i> , 2017 , 19, 4287-4293	3.3	19
64	Facile synthesis of ultrathin NiCo2S4 nano-petals inspired by blooming buds for high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7144-7152	13	189
63	Design of coherent anode materials with 0D Ni3S2 nanoparticles self-assembled on 3D interconnected carbon networks for fast and reversible sodium storage. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7394-7402	13	112
62	Highly Efficient and Stable Perovskite Solar Cells Based on Monolithically Grained CH3NH3PbI3 Film. <i>Advanced Energy Materials</i> , 2017 , 7, 1602017	21.8	247
61	Impacts of surface or interface chemistry of ZnSe passivation layer on the performance of CdS/CdSe quantum dot sensitized solar cells. <i>Nano Energy</i> , 2017 , 32, 433-440	17.1	60
60	Energy storage through intercalation reactions: electrodes for rechargeable batteries. <i>National Science Review</i> , 2017 , 4, 26-53	10.8	74
59	Colloidal engineering for monolayer CH3NH3PbI3 films toward high performance perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24168-24177	13	71
58	Fabrication of hybrid Co3O4/NiCo2O4 nanosheets sandwiched by nanoneedles for high-performance supercapacitors using a novel electrochemical ion exchange. <i>Science China Materials</i> , 2017 , 60, 1168-1178	7.1	23
57	Monolithic MAPbI3 films for high-efficiency solar cells via coordination and a heat assisted process. Journal of Materials Chemistry A, 2017 , 5, 21313-21319	13	109
56	Superior sodium storage performance of additive-free V2O5 thin film electrodes. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16590-16594	13	47
55	Flexible and Wearable All-Solid-State Supercapacitors with Ultrahigh Energy Density Based on a Carbon Fiber Fabric Electrode. <i>Advanced Energy Materials</i> , 2017 , 7, 1700409	21.8	131

Investigation of the role of Mn dopant in CdS quantum dot sensitized solar cell. Electrochimica Acta,

Understanding electrochemical potentials of cathode materials in rechargeable batteries. Materials

6.7

21.8

46

573

2016, 191, 62-69

Today, 2016, 19, 109-123

38

37

(2015-2016)

36	Uniform 8LiFePO 4 Li 3 V 2 (PO 4) 3 /C nanoflakes for high-performance Li-ion batteries. <i>Nano Energy</i> , 2016 , 22, 48-58	17.1	69
35	A promising cathode for Li-ion batteries: Li3V2(PO4)3. Energy Storage Materials, 2016, 4, 15-58	19.4	99
34	Mesocrystal MnO cubes as anode for Li-ion capacitors. <i>Nano Energy</i> , 2016 , 22, 290-300	17.1	155
33	Co3S4@polyaniline nanotubes as high-performance anode materials for sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5505-5516	13	164
32	High Efficiency CdS/CdSe Quantum Dot Sensitized Solar Cells with Two ZnSe Layers. <i>ACS Applied Materials & Acs Applied & Acs App</i>	9.5	71
31	Tailoring band structure of ternary CdSxSe1⊠ quantum dots for highly efficient sensitized solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 155, 20-29	6.4	53
30	A comparison of ZnS and ZnSe passivation layers on CdS/CdSe co-sensitized quantum dot solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 14773-14780	13	56
29	Doubling the power conversion efficiency in CdS/CdSe quantum dot sensitized solar cells with a ZnSe passivation layer. <i>Nano Energy</i> , 2016 , 26, 114-122	17.1	102
28	Freestanding flexible graphene foams@polypyrrole@MnO2 electrodes for high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9196-9203	13	65
27	Impact of sol aging on TiO2 compact layer and photovoltaic performance of perovskite solar cell. <i>Science China Materials</i> , 2016 , 59, 710-718	7.1	21
26	Lamellar MoSe nanosheets embedded with MoO nanoparticles: novel hybrid nanostructures promoted excellent performances for lithium ion batteries. <i>Nanoscale</i> , 2016 , 8, 17902-17910	7.7	129
25	Band-structure tailoring and surface passivation for highly efficient near-infrared responsive PbS quantum dot photovoltaics. <i>Journal of Power Sources</i> , 2016 , 333, 107-117	8.9	25
24	Constructing water-resistant CH3NH3PbI3 perovskite films via coordination interaction. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17018-17024	13	69
23	Three dimensional architecture of carbon wrapped multilayer Na3V2O2(PO4)2F nanocubes embedded in graphene for improved sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 17563-17568	13	70
22	Template-free synthesis of ultra-large V2O5 nanosheets with exceptional small thickness for high-performance lithium-ion batteries. <i>Nano Energy</i> , 2015 , 13, 58-66	17.1	119
21	Fast and Reversible Li Ion Insertion in Carbon-Encapsulated Li3VO4 as Anode for Lithium-Ion Battery. <i>Advanced Functional Materials</i> , 2015 , 25, 3497-3504	15.6	148
20	Control of Nanostructures and Interfaces of Metal Oxide Semiconductors for Quantum-Dots-Sensitized Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 1859-69	6.4	95
19	ZnO cathode buffer layers for inverted polymer solar cells. <i>Energy and Environmental Science</i> , 2015 , 8, 3442-3476	35.4	222

18	Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. <i>Science China Materials</i> , 2015 , 58, 715-766	7.1	203
17	Mesoporous Carbon Nanofibers Embedded with MoS2 Nanocrystals for Extraordinary Li-Ion Storage. <i>Chemistry - A European Journal</i> , 2015 , 21, 18248-57	4.8	21
16	Improved charge generation and collection in dye-sensitized solar cells with modified photoanode surface. <i>Nano Energy</i> , 2014 , 10, 353-362	17.1	35
15	A highly efficient (>6%) Cd1⊠MnxSe quantum dot sensitized solar cell. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19653-19659	13	117
14	Efficient band alignment for ZnxCd1⊠Se QD-sensitized TiO2 solar cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3669	13	27
13	Facile synthesis of nanorod-assembled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors. <i>Journal of Power Sources</i> , 2014 , 272, 107-112	8.9	94
12	Mesoporous TiO2 beads for high efficiency CdS/CdSe quantum dot co-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2517	13	96
11	Sn-Doped V2O5 Film with Enhanced Lithium-Ion Storage Performance. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 23507-23514	3.8	129
10	Nanomaterials for energy conversion and storage. <i>Chemical Society Reviews</i> , 2013 , 42, 3127-71	58.5	1188
9	Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6770	13	67
8	ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells. <i>Nanoscale</i> , 2013 , 5, 936-43	7.7	115
7	Enhanced Performance of CdS/CdSe Quantum Dot Cosensitized Solar Cells via Homogeneous Distribution of Quantum Dots in TiO2 Film. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 18655-18662	3.8	158
6	Nanostructured carbon for energy storage and conversion. <i>Nano Energy</i> , 2012 , 1, 195-220	17.1	797
5	Hydrogenated Li(4)Ti(5)O(12) nanowire arrays for high rate lithium ion batteries. <i>Advanced Materials</i> , 2012 , 24, 6502-6	24	411
4	Enhanced Lithium-Ion Intercalation Properties of V2O5 Xerogel Electrodes with Surface Defects. Journal of Physical Chemistry C, 2011 , 115, 4959-4965	3.8	86
3	Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides. <i>Chemistry of Materials</i> , 2006 , 18, 2787-2804	9.6	400
2	Nanostructures and Nanomaterials 2004 ,		656
1	Tunable engineering of photo- and electro-induced carrier dynamics in perovskite photoelectronic devices. <i>Science China Materials</i> ,1	7.1	2