List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/137822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	[M ₂ (μâ€OH) ₂ (DHBQ) ₃] (M = Zr, Hf) ―Two New Isostructural Coordination Polymers based on the Unique M ₂ O ₁₄ Inorganic Building Unit and 2,5â€Dioxidoâ€ <i>p</i> â€benzoquinone as Linker Molecule. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 436-441.	0.6	5
2	An Anthraceneâ€Based Metalâ€Organic Framework for Selective Photoâ€Reduction of Carbon Dioxide to Formic Acid Coupled with Water Oxidation. Chemistry - A European Journal, 2021, 27, 4098-4107.	1.7	11
3	A Flexible and Porous Ferroceneâ€Based Gallium MOF with MILâ€53 Architecture. European Journal of Inorganic Chemistry, 2021, 2021, 713-719.	1.0	9
4	lsoreticular Chemistry of Group 13 Metal–Organic Framework Compounds Based on V-Shaped Linker Molecules: Exceptions to the Rule?. Inorganic Chemistry, 2021, 60, 8861-8869.	1.9	4
5	Synthesis of two new Hfâ€MOFs with UiOâ€66 and CAUâ€22 structure employing 2,5â€pyrazinedicarboxylic acid as linker molecule Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 2029-2034.	0.6	1
6	A vinyl functionalized mixed linker CAU-10 metal-organic framework acting as a fluorescent sensor for the selective detection of H2S and palladium(II). Microporous and Mesoporous Materials, 2020, 293, 109790.	2.2	31
7	Insights into high pressure gas adsorption properties of ZIF-67: Experimental and theoretical studies. Microporous and Mesoporous Materials, 2020, 294, 109867.	2.2	40
8	Toward a Rational Design of Titanium Metal-Organic Frameworks. Matter, 2020, 2, 440-450.	5.0	58
9	Design and Precursor-based Solid-State Synthesis of Mixed-Linker Zr-MIL-140A. Inorganic Chemistry, 2020, 59, 15250-15261.	1.9	4
10	An acetoxy functionalized Al(<scp>iii</scp>) based metal–organic framework showing selective "turn on―detection of perborate in environmental samples. Dalton Transactions, 2020, 49, 17612-17620.	1.6	10
11	Ce-MIL-140: expanding the synthesis routes for cerium(<scp>iv</scp>) metal–organic frameworks. Dalton Transactions, 2020, 49, 11396-11402.	1.6	20
12	A Tetratopic Phosphonic Acid for the Synthesis of Permanently Porous MOFs: Reactor Size-Dependent Product Formation and Crystal Structure Elucidation via Three-Dimensional Electron Diffraction. Inorganic Chemistry, 2020, 59, 13343-13352.	1.9	11
13	Influence of Thermal and Mechanical Stimuli on the Behavior of Al-CAU-13 Metal–Organic Framework. Nanomaterials, 2020, 10, 1698.	1.9	3
14	Observation of three different linker conformers in a scandium ferrocenedicarboxylate coordination polymer. CrystEngComm, 2020, 22, 5569-5572.	1.3	3
15	Synthesis and Exfoliation of a New Layered Mesoporous Zr-MOF Comprising Hexa- and Dodecanuclear Clusters as Well as a Small Organic Linker Molecule. Journal of the American Chemical Society, 2020, 142, 15995-16000.	6.6	33
16	Aqueous Flow Reactor and Vapourâ€Assisted Synthesis of Aluminium Dicarboxylate Metal–Organic Frameworks with Tuneable Water Sorption Properties. Chemistry - A European Journal, 2020, 26, 10841-10848.	1.7	13
17	Scandium Metal–Organic Frameworks Containing Tetracarboxylate Linker Molecules: Synthesis, Structural Relationships, and Properties. Crystal Growth and Design, 2020, 20, 4686-4694.	1.4	18
18	Influence of the substitution pattern of four naphthalenedicarboxylic acids on the structures and properties of group 13 metal–organic frameworks and coordination polymers. Dalton Transactions, 2020, 49, 4861-4868.	1.6	9

#	Article	IF	CITATIONS
19	Polymorphous Indium Metal–Organic Frameworks Based on a Ferrocene Linker: Redox Activity, Porosity, and Structural Diversity. Inorganic Chemistry, 2020, 59, 9969-9978.	1.9	24
20	Synthesis and Characterization of a Layered Scandium MOF Containing a Sulfoneâ€Functionalized Vâ€Shaped Linker Molecule. European Journal of Inorganic Chemistry, 2020, 2020, 1147-1152.	1.0	7
21	Solvent-Free Powder Synthesis and MOF-CVD Thin Films of the Large-Pore Metal–Organic Framework MAF-6. Chemistry of Materials, 2020, 32, 1784-1793.	3.2	62
22	New Scandiumâ€containing Coordination Polymers with Linear Linker Molecules: Crystal Structures and Luminescence Properties. European Journal of Inorganic Chemistry, 2020, 2020, 2737-2743.	1.0	5
23	Waterâ€based Synthesis and Properties of a Scandium 1,4â€Naphthalenedicarboxylate. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1373-1379.	0.6	5
24	Solvent Impact on the Properties of Benchmark Metal–Organic Frameworks: Acetonitrileâ€Based Synthesis of CAUâ€10, Ceâ€UiOâ€66, and Alâ€MILâ€53. Chemistry - A European Journal, 2020, 26, 3877-3883.	1.7	35
25	Hexahydroxytriphenylene for the synthesis of group 13 MOFs – a new inorganic building unit in a β-cristobalite type structure. Dalton Transactions, 2020, 49, 3088-3092.	1.6	14
26	Acetylenedicarboxylate and In Situ Generated Chlorofumarate-Based Hafnium(IV)–Metal–Organic Frameworks: Synthesis, Structure, and Sorption Properties. Inorganic Chemistry, 2019, 58, 10965-10973.	1.9	21
27	The First Thiostannate Compound with Copper(II) Synthesized Under Ambient Conditions: Crystal Structure, Electronic and Thermal Properties. European Journal of Inorganic Chemistry, 2019, 2019, 4427-4432.	1.0	5
28	Bond Formation upon Water Removal in an Unusual "Pseudo―Topotactic Reaction Investigated by Single-Crystal Structure and in Situ Synchrotron X-ray Powder Diffraction Analysis. Crystal Growth and Design, 2019, 19, 5743-5750.	1.4	5
29	An ultra-robust luminescent CAU-10 MOF acting as a fluorescent "turn-off―sensor for Cr2O72â^' in aqueous medium. Inorganica Chimica Acta, 2019, 497, 119078.	1.2	31
30	Synthesis and Characterization of a Rare Transition-Metal Oxothiostannate and Investigation of Its Photocatalytic Properties. Inorganic Chemistry, 2019, 58, 2354-2362.	1.9	12
31	Expanding the Variety of Zirconiumâ€based Inorganic Building Units for Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 10995-11000.	7.2	31
32	The first water-based synthesis of Ce(iv)-MOFs with saturated chiral and achiral C4-dicarboxylate linkers. Dalton Transactions, 2019, 48, 8433-8441.	1.6	24
33	Expanding the Variety of Zirconiumâ€based Inorganic Building Units for Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 11111-11116.	1.6	13
34	Investigating water vapour sorption kinetics of aluminium MOFs by powder X-ray diffraction. CrystEngComm, 2019, 21, 2551-2558.	1.3	6
35	Designing a new aluminium muconate metal–organic framework (MIL-53-muc) as a methanol adsorbent for sub-zero temperature heat transformation applications. Journal of Materials Chemistry A, 2019, 7, 24973-24981.	5.2	14
36	A pyrazine core-based luminescent Zr(<scp>iv</scp>) organic framework for specific sensing of Fe ³⁺ , picric acid and Cr ₂ O ₇ ^{2â^²} . CrystEngComm, 2019, 21, 6252-6260.	1.3	26

#	Article	IF	CITATIONS
37	A porous and redox active ferrocenedicarboxylic acid based aluminium MOF with a MIL-53 architecture. Dalton Transactions, 2019, 48, 16737-16743.	1.6	12
38	Acetylenedicarboxylate-based cerium(<scp>iv</scp>) metal–organic framework with fcu topology: a potential material for air cleaning from toxic halogen vapors. Dalton Transactions, 2019, 48, 15849-15855.	1.6	19
39	A Gaâ€MILâ€53â€ŧype Framework based on 1,4â€Phenylenediacetate Showing Subtle Flexibility. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 1334-1340.	0.6	0
40	A Thiophene-2-carboxamide-Functionalized Zr(IV) Organic Framework as a Prolific and Recyclable Heterogeneous Catalyst for Regioselective Ring Opening of Epoxides. Inorganic Chemistry, 2019, 58, 16581-16591.	1.9	16
41	Metal–organic frameworks in Germany: From synthesis to function. Coordination Chemistry Reviews, 2019, 380, 378-418.	9.5	91
42	Reversible Optical Writing and Data Storage in an Anthracene‣oaded Metal–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 2423-2427.	7.2	102
43	Optimisation of synthesis conditions for UiO-66-CO ₂ H towards scale-up and its vapour sorption properties. Reaction Chemistry and Engineering, 2018, 3, 365-370.	1.9	16
44	Scalable Green Synthesis and Fullâ€Scale Test of the Metal–Organic Framework CAUâ€10â€H for Use in Adsorptionâ€Driven Chillers. Advanced Materials, 2018, 30, 1705869.	11.1	131
45	Green synthesis of a new layered aluminium citraconate: crystal structures, intercalation behaviour towards H ₂ O and <i>in situ</i> PXRD studies of its crystallisation. Dalton Transactions, 2018, 47, 215-223.	1.6	12
46	Synthesis of M-UiO-66 (M = Zr, Ce or Hf) employing 2,5-pyridinedicarboxylic acid as a linker: defect chemistry, framework hydrophilisation and sorption properties. Dalton Transactions, 2018, 47, 1062-1070.	1.6	84
47	Green Synthesis of a New Alâ€MOF Based on the Aliphatic Linker Mesaconic Acid: Structure, Properties and In Situ Crystallisation Studies of Alâ€MILâ€68â€Mes. Chemistry - A European Journal, 2018, 24, 2173-2181.	1.7	33
48	A precursor method for the synthesis of new Ce(<scp>iv</scp>) MOFs with reactive tetracarboxylate linkers. Chemical Communications, 2018, 54, 876-879.	2.2	60
49	Investigation of the Kinetic Stabilization of a Ce ⁴⁺ â€based MOF by inâ€situ Powder Xâ€ray Diffraction. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1826-1831.	0.6	18
50	Structural Diversity in Ni Chain Coordination Polymers: Synthesis, Structures, Isomerism and Magnetism. European Journal of Inorganic Chemistry, 2018, 2018, 4779-4789.	1.0	26
51	Systematic Investigations of the Transition between Framework Topologies in Ce/Zr-MOFs. Inorganic Chemistry, 2018, 57, 12820-12826.	1.9	20
52	Highly stable and porous porphyrin-based zirconium and hafnium phosphonates – electron crystallography as an important tool for structure elucidation. Chemical Science, 2018, 9, 5467-5478.	3.7	70
53	Synthesis and Shaping Scale-up Study of Functionalized UiO-66 MOF for Ammonia Air Purification Filters. Industrial & Engineering Chemistry Research, 2018, 57, 8200-8208.	1.8	86
54	Realizing the Potential of Acetylenedicarboxylate by Functionalization to Halofumarate in Zr ^{IV} Metal–Organic Frameworks. Chemistry - A European Journal, 2018, 24, 14048-14053.	1.7	24

#	Article	IF	CITATIONS
55	Direct water-based synthesis and characterization of new Zr/Hf-MOFs with dodecanuclear clusters as IBUs. CrystEngComm, 2018, 20, 5108-5111.	1.3	29
56	Fluorogenic naked-eye sensing and live-cell imaging of cyanide by a hydrazine-functionalized CAU-10 metal–organic framework. CrystEngComm, 2018, 20, 4194-4201.	1.3	29
57	Combined in- and ex situ studies of pyrazine adsorption into the aliphatic MOF Al-CAU-13: structures, dynamics and correlations. Dalton Transactions, 2017, 46, 1397-1405.	1.6	21
58	An in situ investigation of the water-induced phase transformation of UTSA-74 to MOF-74(Zn). CrystEngComm, 2017, 19, 4152-4156.	1.3	20
59	Green Synthesis of Zr-CAU-28: Structure and Properties of the First Zr-MOF Based on 2,5-Furandicarboxylic Acid. Inorganic Chemistry, 2017, 56, 2270-2277.	1.9	66
60	Synthesis, crystal structures, thermal, magnetic and luminescence properties of Mn(II) and Cd(II) thiocyanate coordination compounds with 4-(Boc-amino)pyridine as co-ligand. Inorganica Chimica Acta, 2017, 461, 290-297.	1.2	15
61	Co-Ligand Dependent Formation and Phase Transformation of Four Porphyrin-Based Cerium Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 3462-3474.	1.4	29
62	Effect of partial linker fluorination and linker extension on structure and properties of the Al-MOF CAU-10. Microporous and Mesoporous Materials, 2017, 249, 128-136.	2.2	14
63	Polymorphous Al-MOFs Based on V-Shaped Linker Molecules: Synthesis, Properties, and in Situ Investigation of Their Crystallization. Inorganic Chemistry, 2017, 56, 5851-5862.	1.9	25
64	Adsorption and Reactive Desorption on Metal–Organic Frameworks: A Direct Strategy for Lactic Acid Recovery. ChemSusChem, 2017, 10, 643-650.	3.6	17
65	Systematic study of the impact of MOF densification into tablets on textural and mechanical properties. CrystEngComm, 2017, 19, 4211-4218.	1.3	58
66	New Group 13 MIL-53 Derivates based on 2,5-Thiophenedicarboxylic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1600-1608.	0.6	44
67	Emergence of Nonlinear Optical Activity by Incorporation of a Linker Carrying the <i>p</i> -Nitroaniline Motif in MIL-53 Frameworks. Journal of Physical Chemistry C, 2017, 121, 25509-25519.	1.5	20
68	Rapid and highly sensitive detection of extracellular and intracellular H ₂ S by an azide-functionalized Al(<scp>iii</scp>)-based metal–organic framework. Dalton Transactions, 2017, 46, 12856-12864.	1.6	57
69	Synthesis of MOFs: a personal view on rationalisation, application and exploration. Dalton Transactions, 2017, 46, 8339-8349.	1.6	30
70	Synthesis and Characterization of New Ce(IV)-MOFs Exhibiting Various Framework Topologies. Crystal Growth and Design, 2017, 17, 1125-1131.	1.4	133
71	"Green―Synthesis of Metalâ€Organic Frameworks. European Journal of Inorganic Chemistry, 2016, 2016, 4290-4299.	1.0	160
72	A Facile "Green―Route for Scalable Batch Production and Continuous Synthesis of Zirconium MOFs. European Journal of Inorganic Chemistry, 2016, 2016, 4490-4498.	1.0	117

#	Article	IF	CITATIONS
73	Solventâ€Driven Gate Opening in MOFâ€76â€Ce: Effect on CO ₂ Adsorption. ChemSusChem, 2016, 9, 713-719.	3.6	49
74	Silver-induced reconstruction of an adeninate-based metal–organic framework for encapsulation of luminescent adenine-stabilized silver clusters. Journal of Materials Chemistry C, 2016, 4, 4259-4268.	2.7	22
75	Nanoscale Synthesis of Two Porphyrin-Based MOFs with Gallium and Indium. Inorganic Chemistry, 2016, 55, 5312-5319.	1.9	37
76	Towards metal–organic framework based field effect chemical sensors: UiO-66-NH ₂ for nerve agent detection. Chemical Science, 2016, 7, 5827-5832.	3.7	108
77	Synthesis and characterisation of the porous zinc phosphonate [Zn ₂ (H ₂ PPB)(H ₂ O) ₂]·xH ₂ O. CrystEngComm, 2016, 18, 8147-8150.	1.3	18
78	Water-based synthesis and characterisation of a new Zr-MOF with a unique inorganic building unit. Chemical Communications, 2016, 52, 12698-12701.	2.2	56
79	Structure property relationships affecting the proton conductivity in imidazole loaded Al-MOFs. Dalton Transactions, 2016, 45, 15041-15047.	1.6	27
80	Conformation-controlled hydrogen storage in the CAU-1 metal–organic framework. Physical Chemistry Chemical Physics, 2016, 18, 29258-29267.	1.3	15
81	Water adsorption behaviour of CAU-10-H: a thorough investigation of its structure–property relationships. Journal of Materials Chemistry A, 2016, 4, 11859-11869.	5.2	166
82	Dihydroxybenzoquinone as Linker for the Synthesis of Permanently Porous Aluminum Metal–Organic Frameworks. Inorganic Chemistry, 2016, 55, 7425-7431.	1.9	48
83	Synthesis and structure of Zr(<scp>iv</scp>)- and Ce(<scp>iv</scp>)-based CAU-24 with 1,2,4,5-tetrakis(4-carboxyphenyl)benzene. Dalton Transactions, 2016, 45, 18822-18826.	1.6	76
84	An aliphatic copper metal-organic framework as versatile shape selective adsorbent in liquid phase separations. Microporous and Mesoporous Materials, 2016, 226, 292-298.	2.2	38
85	Structure and properties of Al-MIL-53-ADP, a breathing MOF based on the aliphatic linker molecule adipic acid. Dalton Transactions, 2016, 45, 4179-4186.	1.6	54
86	A Flexible Photoactive Titanium Metal–Organic Framework Based on a [Ti ^{IV} ₃ (μ ₃ â€O)(O) ₂ (COO) ₆] Cluster. Angewandte Chemie - International Edition, 2015, 54, 13912-13917.	7.2	103
87	Transient absorption spectroscopy and photochemical reactivity of CAU-8. Journal of Materials Chemistry C, 2015, 3, 3607-3613.	2.7	15
88	[Al2(OH)2(TCPB)] – An Al-MOF based on a tetratopic linker molecule. Microporous and Mesoporous Materials, 2015, 216, 27-35.	2.2	18
89	In Situ Formation of a MoS ₂ â€Based Inorganic–Organic Nanocomposite by Directed Thermal Decomposition. Chemistry - A European Journal, 2015, 21, 8918-8925.	1.7	7
90	Green synthesis of zirconium-MOFs. CrystEngComm, 2015, 17, 4070-4074.	1.3	85

#	Article	IF	CITATIONS
91	Unexpected Photoreactivity in a NO ₂ -Functionalized Aluminum-MOF. Journal of Physical Chemistry C, 2015, 119, 26401-26408.	1.5	9
92	New Al-MOFs Based on Sulfonyldibenzoate Ions: A Rare Example of Intralayer Porosity. Inorganic Chemistry, 2015, 54, 492-501.	1.9	43
93	First examples of aliphatic zirconium MOFs and the influence of inorganic anions on their crystal structures. CrystEngComm, 2015, 17, 331-337.	1.3	44
94	Structures and properties of gallium-MOFs with MIL-53-topology based on aliphatic linker molecules. Microporous and Mesoporous Materials, 2014, 200, 311-316.	2.2	26
95	Photophysical Evidence of Chargeâ€Transferâ€Complex Pairs in Mixedâ€Linker 5â€Amino/5â€Nitroisophthalate CAUâ€10. ChemPhysChem, 2014, 15, 924-928.	1.0	9
96	Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal–Organic Frameworks. Crystal Growth and Design, 2014, 14, 5370-5372.	1.4	306
97	Conformation-Controlled Sorption Properties and Breathing of the Aliphatic Al-MOF [Al(OH)(CDC)]. Inorganic Chemistry, 2014, 53, 4610-4620.	1.9	74
98	A zirconium squarate metal–organic framework with modulator-dependent molecular sieving properties. Chemical Communications, 2014, 50, 10055-10058.	2.2	64
99	Formation and characterisation of Mn-MIL-100. CrystEngComm, 2013, 15, 544-550.	1.3	100
100	Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics. Dalton Transactions, 2013, 42, 4840.	1.6	81
101	Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs. Chemistry of Materials, 2013, 25, 17-26.	3.2	307
102	First Keto-Functionalized Microporous Al-Based Metal–Organic Framework: [Al(OH)(O ₂ C-C ₆ H ₄ -CO-C ₆ H ₄ Inorganic Chemistry, 2013, 52, 1854-1859.	•)]. .9	51
103	High-throughput studies of highly porous Al-based MOFs. Microporous and Mesoporous Materials, 2013, 171, 156-165.	2.2	39
104	Synthesis of MOFs. RSC Catalysis Series, 2013, , 9-30.	0.1	7
105	Structure and Properties of [Al ₄ (OH) ₈ (<i>o</i> â€C ₆ H ₄ (CO ₂) _{2a Layered Aluminum Phthalate. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 2785-2789}	>) ₂]·H<
106	A new Al-MOF based on a unique column-shaped inorganic building unit exhibiting strongly hydrophilic sorption behaviour. Chemical Communications, 2012, 48, 9486.	2.2	81
107	CAU-3: A new family of porous MOFs with a novel Al-based brick: [Al2(OCH3)4(O2C-X-CO2)] (X = aryl). Dalton Transactions, 2012, 41, 4164.	1.6	76
108	A new aluminium-based microporous metal–organic framework: Al(BTB) (BTB =) Tj ETQq0 0 0 rgBT /Overlock 10	0 Tf 50 62	Td (1,3,5-be

#	Article	IF	CITATIONS
109	Synthesis, Structure, and Selected Properties of Aluminum-, Gallium-, and Indium-Based Metal-Organic Frameworks. , 0, , 105-135.		5