Yingning Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1377901/publications.pdf Version: 2024-02-01

YINCHING WANC

#	Article	IF	CITATIONS
1	Highly Dispersive Germanium-Doped Coupled Ring-Core Fiber for Vortex Modes. Journal of Lightwave Technology, 2022, 40, 2144-2150.	4.6	6
2	Multi-Ring-Air-Core Fiber Supporting Numerous Radially Fundamental OAM Modes. Journal of Lightwave Technology, 2022, 40, 4420-4428.	4.6	8
3	19-ring-air-core fiber supporting thousands of OAM modes for spatial division multiplexing. Optics Letters, 2022, 47, 2206.	3.3	6
4	1.3-Octave Coherent Supercontinuum Generation of OAM Mode in Ring-Core Fiber With All-Normal Dispersion. IEEE Access, 2022, 10, 76990-76997.	4.2	1
5	Triple Coupled Ringâ€Core Fiber with Dual Highly Dispersive Windows for Orbital Angular Momentum Mode. Advanced Photonics Research, 2022, 3, .	3.6	2
6	Air-Core Ring Fiber Guiding >400 Radially Fundamental OAM Modes Across S + C + L Bands. IEEE Access, 2021, 9, 75617-75625.	4.2	3
7	Hollow Ring-Core Photonic Crystal Fiber With >500 OAM Modes Over 360-nm Communications Bandwidth. IEEE Access, 2021, 9, 66999-67005.	4.2	9
8	7-Ring-Air-Core Trench-Assisted Fibre Supporting >300 Radially Fundamental OAM Modes Across S+C+L Bands. , 2021, , .		0
9	Seven air-core fibers with germanium-doped high-index rings supporting hundreds of OAM modes. Optics Express, 2021, 29, 19540.	3.4	11
10	Dispersion Compensating Ring Fibre in the C-Band for OAM Mode. , 2021, , .		0
11	37-Air-Core Chalcogenide Ring Fiber with >4000 Radially Fundamental OAM Modes Across C+L Bands. , 2021, , .		0
12	Beyond Two-Octave OAM Supercontinuum Generation in Gemanium-Doped Ring-Core Fiber. , 2021, , .		0
13	Non-zero dispersion-shifted ring fiber for the orbital angular momentum mode. Optics Express, 2021, 29, 25428.	3.4	8
14	Air-Core Non-Zero Dispersion-Shifted Fiber With High-Index Ring for OAM Mode. IEEE Access, 2021, 9, 107804-107811.	4.2	2
15	Two-Octave Supercontinuum Generation of OAM Modes in Ring Fiber. , 2021, , .		0
16	1.2-Octave Coherent OAM Supercontinuum Generation in Germanium-Doped Ring-Core Fiber. , 2021, , .		0
17	Beyond Two-Octave Coherent OAM Supercontinuum Generation in Air-Core As ₂ S ₃ Ring Fiber. IEEE Access, 2020, 8, 96543-96549.	4.2	16
18	Two-Octave Supercontinuum Generation of High-Order OAM Modes in Air-Core Asâ,,Sâ,f Ring Fiber. IEEE Access, 2020, 8, 114135-114142.	4.2	15

YINGNING WANG

#	Article	IF	CITATIONS
19	1.6-Octave Coherent OAM Supercontinuum Generation in As ₂ S ₃ Photonic Crystal Fiber. IEEE Access, 2020, 8, 168177-168185.	4.2	18
20	Air-Core Ring Fiber With >1000 Radially Fundamental OAM Modes Across O, E, S, C, and L Bands. IEEE Access, 2020, 8, 68280-68287.	4.2	23
21	Enabling Technology in High-Baud-Rate Coherent Optical Communication Systems. IEEE Access, 2020, 8, 111318-111329.	4.2	20
22	Highly dispersive coupled ring-core fiber for orbital angular momentum modes. Applied Physics Letters, 2020, 117, .	3.3	13
23	Non-Zero Dispersion-Shifted Ring Fiber for OAM Mode. , 2020, , .		2
24	19-Ring-Core Chalcogenide Fiber Supporting >2000 Radially Fundamental OAM Modes Across C and L Bands. , 2020, , .		0
25	Hollow Ring-Core Hybrid Photonic Crystal Fiber Supporting >500 OAM Modes Across O, E, S, C, L Bands. , 2020, , .		1
26	7-Air-Core-Ring Fiber Supporting > 400 Radially Fundamental OAM Modes Across C and L Bands. , 2020, ,		0