
## Yan-Ai Mei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1377530/publications.pdf Version: 2024-02-01



Υληγάι Μει

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Protein Kinase C Controls the Excitability of Cortical Pyramidal Neurons by Regulating Kv2.2 Channel<br>Activity. Neuroscience Bulletin, 2022, 38, 135-148.                                                                                              | 2.9  | 7         |
| 2  | Neuritin improves the neurological functional recovery after experimental intracerebral hemorrhage in mice. Neurobiology of Disease, 2021, 156, 105407.                                                                                                  | 4.4  | 3         |
| 3  | Cyproheptadine Regulates Pyramidal Neuron Excitability in Mouse Medial Prefrontal Cortex.<br>Neuroscience Bulletin, 2018, 34, 759-768.                                                                                                                   | 2.9  | 0         |
| 4  | Functions and the related signaling pathways of the neurotrophic factor neuritin. Acta<br>Pharmacologica Sinica, 2018, 39, 1414-1420.                                                                                                                    | 6.1  | 23        |
| 5  | Neuritin promotes neurite and spine growth in rat cerebellar granule cells via Lâ€type calcium<br>channelâ€mediated calcium influx. Journal of Neurochemistry, 2018, 147, 40-57.                                                                         | 3.9  | 9         |
| 6  | Neuritin Enhances Synaptic Transmission in Medial Prefrontal Cortex in Mice by Increasing CaV3.3<br>Surface Expression. Cerebral Cortex, 2017, 27, 3842-3855.                                                                                            | 2.9  | 16        |
| 7  | Effect of 1.8 GHz radiofrequency electromagnetic radiation on novel object associative recognition memory in mice. Scientific Reports, 2017, 7, 44521.                                                                                                   | 3.3  | 25        |
| 8  | Small-Conductance Ca <sup>2+</sup> -Activated Potassium Channels Negatively Regulate Aldosterone<br>Secretion in Human Adrenocortical Cells. Hypertension, 2016, 68, 785-795.                                                                            | 2.7  | 24        |
| 9  | Neuritin Up-regulates Kv4.2 α-Subunit of Potassium Channel Expression and Affects Neuronal<br>Excitability by Regulating the Calcium-Calcineurin-NFATc4 Signaling Pathway. Journal of Biological<br>Chemistry, 2016, 291, 17369-17381.                   | 3.4  | 29        |
| 10 | GDF-15 enhances intracellular Ca2+ by increasing Cav1.3 expression in rat cerebellar granule neurons.<br>Biochemical Journal, 2016, 473, 1895-1904.                                                                                                      | 3.7  | 11        |
| 11 | Extremely Low Frequency Electromagnetic Fields Facilitate Vesicle Endocytosis by Increasing<br>Presynaptic Calcium Channel Expression at a Central Synapse. Scientific Reports, 2016, 6, 21774.                                                          | 3.3  | 49        |
| 12 | Growth differentiation factor-15 promotes glutamate release in medial prefrontal cortex of mice through upregulation of T-type calcium channels. Scientific Reports, 2016, 6, 28653.                                                                     | 3.3  | 19        |
| 13 | Flotillin-1 downregulates K+ current by directly coupling with Kv2.1 subunit. Protein and Cell, 2016, 7, 455-460.                                                                                                                                        | 11.0 | 10        |
| 14 | Exposure to 50ÂHz magnetic field modulates <scp>GABA<sub>A</sub></scp> currents in cerebellar<br>granule neurons through an <scp>EP</scp> receptorâ€mediated <scp>PKC</scp> pathway. Journal of<br>Cellular and Molecular Medicine, 2015, 19, 2413-2422. | 3.6  | 5         |
| 15 | Neuritin reverses deficits in murine novel object associative recognition memory caused by exposure to extremely low-frequency (50 Hz) electromagnetic fields. Scientific Reports, 2015, 5, 11768.                                                       | 3.3  | 31        |
| 16 | cAMP/PKA Pathways and S56 Phosphorylation Are Involved in AA/PGE2-Induced Increases in rNaV1.4<br>Current. PLoS ONE, 2015, 10, e0140715.                                                                                                                 | 2.5  | 4         |
| 17 | GDF15 regulates Kv2.1-mediated outward K+ current through the Akt/mTOR signalling pathway in rat cerebellar granule cells. Biochemical Journal, 2014, 460, 35-47.                                                                                        | 3.7  | 19        |
| 18 | Melatonin protects rat cerebellar granule cells against electromagnetic fieldâ€induced increases in Na<br>+ currents through intracellular Ca 2+ release. Journal of Cellular and Molecular Medicine, 2014, 18,<br>1060-1070.                            | 3.6  | 11        |

Yan-Ai Mei

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Aβ40 modulates GABA <sub>A</sub> receptor α6 subunit expression and rat cerebellar granule neuron<br>maturation through the ERK/ <scp>mTOR</scp> pathway. Journal of Neurochemistry, 2014, 128, 350-362.                  | 3.9 | 15        |
| 20 | Exposure to extremely low-frequency electromagnetic fields inhibits T-type calcium channels via<br>AA/LTE4 signaling pathway. Cell Calcium, 2014, 55, 48-58.                                                              | 2.4 | 36        |
| 21 | Resveratrol inhibits Kv2.2 currents through the estrogen receptor GPR30-mediated PKC pathway.<br>American Journal of Physiology - Cell Physiology, 2013, 305, C547-C557.                                                  | 4.6 | 40        |
| 22 | Neuregulin-1/ErbB4 signaling regulates Kv4.2-mediated transient outward K <sup>+</sup> current<br>through the Akt/mTOR pathway. American Journal of Physiology - Cell Physiology, 2013, 305, C197-C206.                   | 4.6 | 28        |
| 23 | Exposure to Extremely Low-Frequency Electromagnetic Fields Modulates Na+ Currents in Rat<br>Cerebellar Granule Cells through Increase of AA/PGE2 and EP Receptor-Mediated cAMP/PKA Pathway.<br>PLoS ONE, 2013, 8, e54376. | 2.5 | 39        |
| 24 | Neuritin Activates Insulin Receptor Pathway to Up-regulate Kv4.2-mediated Transient Outward K+<br>Current in Rat Cerebellar Granule Neurons. Journal of Biological Chemistry, 2012, 287, 41534-41545.                     | 3.4 | 41        |
| 25 | Hydrogen peroxide enhanced Ca2+-activated BK currents and promoted cell injury in human dermal fibroblasts. Life Sciences, 2012, 90, 424-431.                                                                             | 4.3 | 10        |
| 26 | Sigma-1 Receptor Agonists Directly Inhibit NaV1.2/1.4 Channels. PLoS ONE, 2012, 7, e49384.                                                                                                                                | 2.5 | 19        |
| 27 | Cholesterol enhances neuron susceptibility to apoptotic stimuli via cAMP/PKA/CREBâ€dependent<br>upâ€regulation of Kv2.1. Journal of Neurochemistry, 2012, 120, 502-514.                                                   | 3.9 | 21        |
| 28 | Targeting A-type K+ channels in primary sensory neurons for bone cancer pain in a rat model. Pain,<br>2012, 153, 562-574.                                                                                                 | 4.2 | 62        |
| 29 | TGFâ€Î²1 enhances Kv2.1 potassium channel protein expression and promotes maturation of cerebellar granule neurons. Journal of Cellular Physiology, 2012, 227, 297-307.                                                   | 4.1 | 18        |
| 30 | The antidepressant citalopram inhibits delayed rectifier outward K <sup>+</sup> current in mouse cortical neurons. Journal of Neuroscience Research, 2012, 90, 324-336.                                                   | 2.9 | 11        |
| 31 | Cyproheptadine Enhances the IK of Mouse Cortical Neurons through Sigma-1 Receptor-Mediated<br>Intracellular Signal Pathway. PLoS ONE, 2012, 7, e41303.                                                                    | 2.5 | 11        |
| 32 | Arachidonic acid modulates Na+ currents by non-metabolic and metabolic pathways in rat cerebellar<br>granule cells. Biochemical Journal, 2011, 438, 203-215.                                                              | 3.7 | 18        |
| 33 | Brain natriuretic peptide modulates the delayed rectifier outward K <sup>+</sup> current and promotes the proliferation of mouse schwann cells. Journal of Cellular Physiology, 2011, 226, 440-449.                       | 4.1 | 2         |
| 34 | Amoxapine Inhibits the Delayed Rectifier Outward K <sup>+</sup> Current in Mouse Cortical Neurons<br>via cAMP/Protein Kinase A Pathways. Journal of Pharmacology and Experimental Therapeutics, 2010, 332,<br>437-445.    | 2.5 | 14        |
| 35 | Bradykinin inhibits the transient outward K+ current in mouse Schwann cells via the cAMP/PKA<br>pathway. American Journal of Physiology - Cell Physiology, 2009, 296, C1364-C1372.                                        | 4.6 | 8         |
| 36 | Modulation of muscle rNa <sub>v</sub> 1.4 Na <sup>+</sup> channel isoform by arachidonic acid and its nonâ€metabolized analog. Journal of Cellular Physiology, 2009, 219, 173-182.                                        | 4.1 | 7         |

Yan-Ai Mei

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | K <sup>+</sup> channels and the cAMP–PKA pathway modulate TGFâ€Î²1â€induced migration of rat vascular<br>myofibroblasts. Journal of Cellular Physiology, 2008, 216, 835-843.                                                    | 4.1 | 10        |
| 38 | Kν 1.1 is associated with neuronal apoptosis and modulated by protein kinase C in the rat cerebellar granule cell. Journal of Neurochemistry, 2008, 106, 1125-1137.                                                             | 3.9 | 32        |
| 39 | PLCâ€dependent intracellular Ca <sup>2+</sup> release was associated with<br>C <sub>6</sub> â€ceramideâ€induced inhibition of Na <sup>+</sup> current in rat granule cells. Journal of<br>Neurochemistry, 2008, 106, 2463-2475. | 3.9 | 7         |
| 40 | Mefenamic acid bi-directionally modulates the transient outward K+ current in rat cerebellar granule cells. Toxicology and Applied Pharmacology, 2008, 226, 225-235.                                                            | 2.8 | 6         |
| 41 | Flufenamic Acid Bi-Directionally Modulates the Transient Outward K+ Current in Rat Cerebellar<br>Granule Cells. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 195-204.                                      | 2.5 | 9         |
| 42 | C6-ceramide inhibited Na+ currents by intracellular Ca2+ release in rat myoblasts. Journal of Cellular<br>Physiology, 2007, 213, 151-160.                                                                                       | 4.1 | 8         |
| 43 | cAMP/protein kinase A signalling pathway protects against neuronal apoptosis and is associated with modulation ofKv2.1in cerebellar granule cells. Journal of Neurochemistry, 2007, 100, 979-991.                               | 3.9 | 35        |
| 44 | Delayed rectifier outward K+ current mediates the migration of rat cerebellar granule cells stimulated by melatonin. Journal of Neurochemistry, 2007, 102, 333-344.                                                             | 3.9 | 37        |
| 45 | The non-steroidal anti-inflammatory drug, diclofenac, inhibits Na+ current in rat myoblasts.<br>Biochemical and Biophysical Research Communications, 2006, 346, 1275-1283.                                                      | 2.1 | 19        |
| 46 | 4-Aminopyridine, a Kv channel antagonist, prevents apoptosis of rat cerebellar granule neurons.<br>Neuropharmacology, 2006, 51, 737-746.                                                                                        | 4.1 | 44        |
| 47 | 2-lodomelatonin prevents apoptosis of cerebellar granule neurons via inhibition of A-type transient outward K+ currents. Journal of Pineal Research, 2005, 38, 53-61.                                                           | 7.4 | 30        |
| 48 | Inhibition of Na+ channel currents in rat myoblasts by 4-aminopyridine. Toxicology and Applied Pharmacology, 2005, 207, 275-282.                                                                                                | 2.8 | 6         |
| 49 | Elevation of intracellular Ca2+ modulates A-currents in rat cerebellar granule neurons. Journal of Neuroscience Research, 2005, 81, 530-540.                                                                                    | 2.9 | 11        |
| 50 | PKC pathway associated with the expression of an A-type K+ channel induced by TGF-β1 in rat vascular myofibroblasts. Biochemical and Biophysical Research Communications, 2005, 336, 854-859.                                   | 2.1 | 5         |
| 51 | Diclofenac, a nonsteroidal anti-inflammatory drug, activates the transient outward K+ current in rat cerebellar granule cells. Neuropharmacology, 2005, 48, 918-926.                                                            | 4.1 | 32        |
| 52 | Melatonin receptor agonist 2-iodomelatonin prevents apoptosis of cerebellar granule neurons via K+<br>current inhibition. Journal of Pineal Research, 2004, 36, 109-116.                                                        | 7.4 | 39        |
| 53 | ET-1 inhibits B-16 murine melanoma cell migration by decreasing K+ currents. Cytoskeleton, 2004, 58, 127-136.                                                                                                                   | 4.4 | 15        |
| 54 | Luzindole, a melatonin receptor antagonist, inhibits the transient outward K+ current in rat<br>cerebellar granule cells. Brain Research, 2003, 970, 169-177.                                                                   | 2.2 | 12        |

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | TGF-β1 induces the expression of fast inactivating K+ (IA) channels in rat vascular myofibroblasts.<br>Biochemical and Biophysical Research Communications, 2003, 301, 17-23. | 2.1 | 6         |
| 56 | Activation of melatonin receptor increases a delayed rectifier K+ current in rat cerebellar granule<br>cells. Brain Research, 2001, 917, 182-190.                             | 2.2 | 28        |