Oliver J Marsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1376928/publications.pdf

Version: 2024-02-01

933447 888059 17 366 10 17 citations h-index g-index papers 26 26 26 525 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Parker Ice Tongue Collapse, Antarctica, Triggered by Loss of Stabilizing Landâ€Fast Sea Ice. Geophysical Research Letters, 2022, 49, .	4.0	9
2	Atmospheric Triggers of the Brunt Ice Shelf Calving in February 2021. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3. 3	8
3	Morphological changes to the terminus of a maritime glacier during advance and retreat phases: Fox Glacier/Te Moeka o Tuawe, New Zealand. Geografiska Annaler, Series A: Physical Geography, 2021, 103, 167-185.	1.5	4
4	Groundingâ€Zone Flow Variability of Priestley Glacier, Antarctica, in a Diurnal Tidal Regime. Geophysical Research Letters, 2021, 48, e2021GL093853.	4.0	5
5	Differential interferometric synthetic aperture radar for tide modelling in Antarctic ice-shelf grounding zones. Cryosphere, 2019, 13, 3171-3191.	3.9	6
6	Ocean Stratification and Low Melt Rates at the Ross Ice Shelf Grounding Zone. Journal of Geophysical Research: Oceans, 2018, 123, 7438-7452.	2.6	61
7	Unraveling InSAR Observed Antarctic Ice-Shelf Flexure Using 2-D Elastic and Viscoelastic Modeling. Frontiers in Earth Science, 2018, 6, .	1.8	12
8	Diverse landscapes beneath Pine Island Glacier influence ice flow. Nature Communications, 2017, 8, 1618.	12.8	53
9	On the interpretation of ice-shelf flexure measurements. Journal of Glaciology, 2017, 63, 783-791.	2.2	17
10	Analysis of ice shelf flexure and its InSAR representation in the grounding zone of the southern McMurdo Ice Shelf. Cryosphere, 2017, 11, 2481-2490.	3.9	18
11	Viscosity and elasticity: a model intercomparison of ice-shelf bending in an Antarctic grounding zone. Journal of Glaciology, 2017, 63, 573-580.	2.2	15
12	High basal melting forming a channel at the grounding line of Ross Ice Shelf, Antarctica. Geophysical Research Letters, 2016, 43, 250-255.	4.0	72
13	Grounding-zone ice thickness from InSAR: Inverse modelling of tidal elastic bending. Journal of Glaciology, 2014, 60, 526-536.	2.2	16
14	Basal conditions of two Transantarctic Mountains outlet glaciers from observation-constrained diagnostic modelling. Journal of Glaciology, 2014, 60, 855-866.	2.2	6
15	Tidally induced velocity variations of the Beardmore Glacier, Antarctica, and their representation in satellite measurements of ice velocity. Cryosphere, 2013, 7, 1375-1384.	3.9	32
16	Sea ice freeboard in McMurdo Sound, Antarctica, derived by surface-validated ICESat laser altimeter data. Journal of Geophysical Research: Oceans, 2013, 118, 3634-3650.	2.6	20
17	A new perspective on the longitudinal variability of the semidiurnal tide. Geophysical Research Letters, 2010, 37, .	4.0	10