
Diane Hildebrandt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1376633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A geometric approach to steady flow reactors: the attainable region and optimization in concentration space. Industrial & Engineering Chemistry Research, 1987, 26, 1803-1810.	1.8	210
2	Fischer–Tropsch synthesis over iron catalysts supported on carbon nanotubes. Applied Catalysis A: General, 2005, 287, 60-67.	2.2	189
3	Optimal reactor design from a geometric viewpoint—I. Universal properties of the attainable region. Chemical Engineering Science, 1997, 52, 1637-1665.	1.9	125
4	Geometry of the attainable region generated by reaction and mixing: with and without constraints. Industrial & Engineering Chemistry Research, 1990, 29, 49-58.	1.8	116
5	The attainable region and optimal reactor structures. Chemical Engineering Science, 1990, 45, 2161-2168.	1.9	111
6	Fe-Ru small particle bimetallic catalysts supported on carbon nanotubes for use in Fischer–Tröpsch synthesis. Applied Catalysis A: General, 2007, 328, 243-251.	2.2	96
7	Fischerâ^'Tropsch Synthesis Using H ₂ /CO/CO ₂ Syngas Mixtures over a Cobalt Catalyst. Industrial & Engineering Chemistry Research, 2010, 49, 11061-11066.	1.8	75
8	Fischer–Tropsch Synthesis Using H ₂ /CO/CO ₂ Syngas Mixtures over an Iron Catalyst. Industrial & Engineering Chemistry Research, 2011, 50, 11002-11012.	1.8	60
9	A critical review of the impact of water on cobalt-based catalysts in Fischer-Tropsch synthesis. Fuel Processing Technology, 2019, 192, 105-129.	3.7	55
10	Metal-organic framework (MOF)-derived catalysts for Fischer-Tropsch synthesis: Recent progress and future perspectives. Journal of Energy Chemistry, 2020, 51, 230-245.	7.1	52
11	Wastewater treatment of reactive dyestuffs by ozonation in a semi-batch reactor. Chemical Engineering Journal, 2011, 166, 662-668.	6.6	47
12	Heat transfer study with and without Fischer-Tropsch reaction in a fixed bed reactor with TiO2, SiO2, and SiC supported cobalt catalysts. Chemical Engineering Journal, 2014, 247, 75-84.	6.6	45
13	Column Profile Maps. 1. Derivation and Interpretation. Industrial & Engineering Chemistry Research, 2004, 43, 364-374.	1.8	44
14	The effect of sulfur on supported cobalt Fischer–Tropsch catalysts. Catalysis Today, 1999, 49, 33-40.	2.2	43
15	Linear programming formulations for attainable region analysis. Chemical Engineering Science, 2002, 57, 2015-2028.	1.9	42
16	The application of the attainable region analysis to comminution. Chemical Engineering Science, 2006, 61, 5969-5980.	1.9	42
17	Determination of the milling parameters of a platinum group minerals ore to optimize product size distribution for flotation purposes. Minerals Engineering, 2013, 43-44, 67-78.	1.8	41
18	The simultaneous adsorption, activation and <i>in situ</i> reduction of carbon dioxide over Au-loading BiOCl with rich oxygen vacancies. Nanoscale, 2021, 13, 2585-2592.	2.8	41

#	Article	IF	CITATIONS
19	Producing Transportation Fuels with Less Work. Science, 2009, 323, 1680-1681.	6.0	40
20	Recent advances in understanding the Fischer–Tropsch synthesis (FTS) reaction. Current Opinion in Chemical Engineering, 2012, 1, 296-302.	3.8	38
21	Optimal mixing for exothermic reversible reactions. Industrial & Engineering Chemistry Research, 1992, 31, 1541-1549.	1.8	35
22	Effect of the addition of Au on Co/TiO2 catalyst for the Fischer–Tropsch reaction. Topics in Catalysis, 2007, 44, 129-136.	1.3	35
23	Use of the attainable region analysis to optimize particle breakage in a ball mill. Chemical Engineering Science, 2009, 64, 3766-3777.	1.9	35
24	The role of vapour–liquid equilibrium in Fischer–Tropsch product distribution. Chemical Engineering Science, 2011, 66, 6254-6263.	1.9	35
25	Vapor recompression for efficient distillation. 1. A new synthesis perspective on standard configurations. AICHE Journal, 2013, 59, 2977-2992.	1.8	35
26	Study of Radial Heat Transfer in a Tubular Fischerâ^'Tropsch Synthesis Reactor. Industrial & Engineering Chemistry Research, 2010, 49, 10682-10688.	1.8	33
27	An attainable region analysis of the effect of ball size on milling. Powder Technology, 2011, 210, 36-46.	2.1	33
28	Study of the effects of temperature on syngas composition from pyrolysis of wood pellets using a nitrogen plasma torch reactor. Journal of Analytical and Applied Pyrolysis, 2018, 130, 159-168.	2.6	33
29	Synthesis, structure, and performance of carbide phases in Fischer-Tropsch synthesis: A critical review. Fuel, 2021, 296, 120689.	3.4	33
30	Reactor and process synthesis. Computers and Chemical Engineering, 1997, 21, S775-S783.	2.0	32
31	A comparison of Au/Co/Al2O3 and Au/Co/SiO2 catalysts in the Fischer–Tropsch reaction. Applied Catalysis A: General, 2011, 395, 1-9.	2.2	32
32	The effect of CO2 on a cobalt-based catalyst for low temperature Fischer–Tropsch synthesis. Chemical Engineering Journal, 2012, 193-194, 318-327.	6.6	32
33	Cobalt hybrid catalysts in Fischer-Tropsch synthesis. Reviews in Chemical Engineering, 2020, 36, 437-457.	2.3	32
34	The effect of silanol groups on the metal-support interactions in silica-supported cobalt Fischer-Tropsch catalysts. A temperature programmed surface reaction. Journal of Catalysis, 2020, 381, 121-129.	3.1	31
35	The impact and challenges of sustainable biogas implementation: moving towards a bio-based economy. Energy, Sustainability and Society, 2017, 7, .	1.7	30
36	Choosing Optimal Control Policies Using the Attainable Region Approach. Industrial & Engineering Chemistry Research, 1999, 38, 639-651.	1.8	29

#	Article	IF	CITATIONS
37	Fischer–Tropsch synthesis using H2/CO/CO2 syngas mixtures: A comparison of paraffin to olefin ratios for iron and cobalt based catalysts. Applied Catalysis A: General, 2012, 433-434, 58-68.	2.2	29
38	Incorporation of solar-thermal energy into a gasification process to co-produce bio-fertilizer and power. Environmental Pollution, 2020, 266, 115103.	3.7	28
39	On-line deactivation of Au/TiO2 for CO oxidation in H2-rich gas streams. Catalysis Today, 2007, 122, 254-259.	2.2	27
40	Ultra-deep desulphurization of both model and commercial diesel fuels by adsorption method. Journal of Environmental Chemical Engineering, 2019, 7, 102957.	3.3	27
41	A study of Fischer-Tropsch synthesis: Product distribution of the light hydrocarbons. Applied Catalysis A: General, 2016, 517, 217-226.	2.2	26
42	Column Profile Maps. 2. Singular Points and Phase Diagram Behaviour in Ideal and Nonideal Systems. Industrial & Engineering Chemistry Research, 2004, 43, 3590-3603.	1.8	25
43	Thermodynamics Analysis of Processes. 1. Implications of Work Integration. Industrial & Engineering Chemistry Research, 2005, 44, 3529-3537.	1.8	25
44	Application of basic process modeling in investigating the breakage behavior of UG2 ore in wet milling. Powder Technology, 2015, 279, 42-48.	2.1	25
45	Classification of Chemical Processes: A Graphical Approach to Process Synthesis To Improve Reactive Process Work Efficiency. Industrial & Engineering Chemistry Research, 2010, 49, 8227-8237.	1.8	24
46	Variation of residence time with chain length for products in a slurry-phase Fischer–Tropsch reactor. Journal of Catalysis, 2012, 287, 93-101.	3.1	23
47	The Attainable Region for Segregated, Maximum Mixed, and Other Reactor Models. Industrial & Engineering Chemistry Research, 1994, 33, 1136-1144.	1.8	22
48	An experimental validation of a specific energy-based approach for comminution. Chemical Engineering Science, 2007, 62, 2765-2776.	1.9	22
49	A laboratory scale application of the attainable region technique on a platinum ore. Powder Technology, 2015, 274, 14-19.	2.1	22
50	Fischer–Tropsch synthesis: product distribution, operating conditions, iron catalyst deactivation and catalyst speciation. International Journal of Industrial Chemistry, 2018, 9, 317-333.	3.1	22
51	Optimal reactor structures for exothermic reversible reactions with complex kinetics. Chemical Engineering Science, 1996, 51, 2399-2407.	1.9	21
52	Improving comminution efficiency using classification: An attainable region approach. Powder Technology, 2008, 187, 252-259.	2.1	21
53	A vapor–liquid equilibrium thermodynamic model for a Fischer–Tropsch reactor. Fluid Phase Equilibria, 2012, 314, 38-45.	1.4	21
54	Ball size distribution for the maximum production of a narrowly-sized mill product. Powder Technology, 2015, 284, 12-18.	2.1	21

#	Article	IF	CITATIONS
55	Scale-up of batch grinding data for simulation of industrial milling of platinum group minerals ore. Minerals Engineering, 2014, 63, 100-109.	1.8	20
56	A long term study of the gas phase of low pressure Fischer-Tropsch products when reducing an iron catalyst with three different reducing gases. Applied Catalysis A: General, 2017, 534, 1-11.	2.2	20
57	Reactor and Process Synthesis. Computers and Chemical Engineering, 1997, 21, S775-S783.	2.0	20
58	Olefin pseudo-equilibrium in the Fischer–Tropsch reaction. Chemical Engineering Journal, 2012, 181-182, 667-676.	6.6	19
59	Synthesis and Integration of Chemical Processes from a Mass, Energy, and Entropy Perspective. Industrial & Engineering Chemistry Research, 2007, 46, 8756-8766.	1.8	18
60	Complex Column Design by Application of Column Profile Map Techniques: Sharp-Split Petlyuk Column Design. Industrial & Engineering Chemistry Research, 2010, 49, 327-349.	1.8	18
61	Application of attainable region theory to batch reactors. Chemical Engineering Science, 2013, 99, 203-214.	1.9	18
62	Analysis of an exothermic reversible reaction in a catalytic reactor with periodic flow reversal. Chemical Engineering Science, 1992, 47, 1825-1837.	1.9	17
63	Making Sense of the Fischerâ~'Tropsch Synthesis Reaction: Start-Up. Industrial & Engineering Chemistry Research, 2010, 49, 9753-9758.	1.8	17
64	Estimating rate constants of contaminant removal in constructed wetlands treating winery effluent: A comparison of three different methods. Chemical Engineering Research and Design, 2014, 92, 903-916.	2.7	17
65	Desulphurization of diesel fuels using intermediate Lewis acids loaded on activated charcoal and alumina. Chemical Engineering Communications, 2019, 206, 572-580.	1.5	17
66	DRIFT spectroscopy and optical reflectance of heat-treated coal from a quenched gasifier. Fuel, 1995, 74, 1216-1219.	3.4	16
67	Novel separation system design using "moving triangles― Computers and Chemical Engineering, 2004, 29, 181-189.	2.0	16
68	Fischer–Tröpsch synthesis over Co/TiO2: Effect of ethanol addition. Fuel, 2007, 86, 73-80.	3.4	16
69	Reactive distillation in conventional Fischer–Tropsch reactors. Fuel Processing Technology, 2015, 130, 54-61.	3.7	16
70	Modulated synthesized Ni-based MOF with improved adsorptive desulfurization activity. Journal of Cleaner Production, 2021, 323, 129196.	4.6	16
71	Self-assembled Zn-functionalized Ni-MOF as an efficient electrode for electrochemical energy storage. Journal of Physics and Chemistry of Solids, 2022, 167, 110779.	1.9	15
72	Variables indicating the cost of vapour-liquid equilibrium separation processes. Chemical Engineering Science, 1996, 51, 4749-4757.	1.9	14

#	Article	IF	CITATIONS
73	High yield syngas formation by partial oxidation of methane over Co-alumina catalysts. Studies in Surface Science and Catalysis, 1997, , 461-465.	1.5	14
74	A graphical approach to process synthesis and its application to steam reforming. AICHE Journal, 2013, 59, 3714-3729.	1.8	14
75	Turning wine (waste) into water: Toward technological advances in the use of constructed wetlands for winery effluent treatment. AICHE Journal, 2014, 60, 420-431.	1.8	14
76	Variation of the Short-Chain Paraffin and Olefin Formation Rates with Time for a Cobalt Fischer–Tropsch Catalyst. Industrial & Engineering Chemistry Research, 2017, 56, 469-478.	1.8	14
77	The "yuck factor―of biogas technology: Naturalness concerns, social acceptance and community dynamics in South Africa. Energy Research and Social Science, 2021, 71, 101846.	3.0	14
78	Process synthesis for reaction systems with cooling via finding the Attainable Region. Computers and Chemical Engineering, 1997, 21, S35-S40.	2.0	14
79	Predicting phase and chemical equilibrium using the convex hull of the Gibbs free energy. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1994, 54, 187-197.	0.1	13
80	The Attainable Region and Pontryagin's Maximum Principle. Industrial & Engineering Chemistry Research, 1999, 38, 652-659.	1.8	13
81	A Process Synthesis Approach To Investigate the Effect of the Probability of Chain Growth on the Efficiency of Fischerâ [®] Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2006, 45, 5928-5935.	1.8	13
82	A Thermodynamic Approach to Olefin Product Distribution in Fischer–Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2012, 51, 16544-16551.	1.8	13
83	Use of the attainable region approach to determine major trends and optimize particle breakage in a laboratory mill. Powder Technology, 2016, 291, 414-419.	2.1	13
84	Process synthesis for reaction systems with cooling via finding the Attainable Region. Computers and Chemical Engineering, 1997, 21, S35-S40.	2.0	12
85	Effect of cobalt carboxylate precursor chain length on Fischer-Tröpsch cobalt/alumina catalysts. Applied Catalysis A: General, 2007, 326, 164-172.	2.2	12
86	A New Way to Look at Fischerâ^'Tropsch Synthesis Using Flushing Experiments. Industrial & Engineering Chemistry Research, 2011, 50, 4359-4365.	1.8	12
87	Low-Pressure Fischer–Tropsch Synthesis: In Situ Oxidative Regeneration of Iron Catalysts. Industrial & Engineering Chemistry Research, 2017, 56, 4267-4274.	1.8	12
88	<scp>Fischer–Tropsch</scp> synthesis with ethene coâ€feeding: Experimental evidence of the COâ€insertion mechanism at low temperature. AICHE Journal, 2020, 66, e17029.	1.8	12
89	Role of CoO-Co nanoparticles supported on SiO2 in Fischer-Tropsch synthesis: Evidence for enhanced CO dissociation and olefin hydrogenation. Fuel Processing Technology, 2021, 216, 106781.	3.7	12
90	ZIF-8-derived ZnO/C decorated hydroxyl-functionalized multi-walled carbon nanotubes as a new composite electrode for supercapacitor application. Colloids and Interface Science Communications, 2022, 47, 100589.	2.0	12

#	Article	IF	CITATIONS
91	Fischerâ^'Tropsch Results and Their Analysis for Reactor Synthesis. Industrial & Engineering Chemistry Research, 2005, 44, 5987-5994.	1.8	11
92	Application of Membrane Residue Curve Maps to Batch and Continuous Processes. Industrial & Engineering Chemistry Research, 2008, 47, 2361-2376.	1.8	11
93	Recursive constant control policy algorithm for attainable regions analysis. Computers and Chemical Engineering, 2009, 33, 309-320.	2.0	11
94	A Revised Method of Attainable Region Construction Utilizing Rotated Bounding Hyperplanes. Industrial & Engineering Chemistry Research, 2010, 49, 10549-10557.	1.8	11
95	Work to Chemical Processes: The Relationship between Heat, Temperature, Pressure, and Process Complexity. Industrial & Engineering Chemistry Research, 2011, 50, 8603-8619.	1.8	11
96	Effects of CO ₂ on South African fresh water microalgae growth. Environmental Progress and Sustainable Energy, 2012, 31, 24-28.	1.3	11
97	Liquid Fuels from Alternative Carbon Sources Minimizing Carbon Dioxide Emissions. AICHE Journal, 2013, 59, 2062-2078.	1.8	11
98	Kinetics of the Decomposition of Hydrogen Peroxide in Acidic Copper Sulfate Solutions. Industrial & Engineering Chemistry Research, 2015, 54, 5589-5597.	1.8	11
99	Use of the attainable region method to simulate a full-scale ball mill with a realistic transport model. Minerals Engineering, 2015, 73, 116-123.	1.8	11
100	A Study of the Fischer–Tropsch Synthesis in a Batch Reactor: Rate, Phase of Water, and Catalyst Oxidation. Energy & Fuels, 2017, 31, 7405-7412.	2.5	11
101	The effect of hydrophobicity on SiO2–supported Co catalysts in Fischer-Tropsch synthesis. Fuel, 2021, 296, 120667.	3.4	11
102	Binary distillation re-visited using the attainable region theory. Computers and Chemical Engineering, 2000, 24, 231-237.	2.0	10
103	Derivation and Properties of Membrane Residue Curve Maps. Industrial & Engineering Chemistry Research, 2006, 45, 9080-9087.	1.8	10
104	Synthesizing a Process from Experimental Results:Â A Fischerâ^'Tropsch Case Study. Industrial & Engineering Chemistry Research, 2007, 46, 156-167.	1.8	10
105	Low-pressure methanol/ dimethylether synthesis from syngas on gold-based catalysts. Gold Bulletin, 2007, 40, 219-224.	3.2	10
106	Using the attainable region analysis to determine the effect of process parameters on breakage in a ball mill. AICHE Journal, 2012, 58, 2665-2673.	1.8	10
107	A fundamental investigation on the breakage of a bed of silica sand particles: An attainable region approach. Powder Technology, 2016, 301, 1208-1212.	2.1	10
108	Effect of feeding nitrogen to a fixed bed Fischer–Tropsch reactor while keeping the partial pressures of reactants the same. Chemical Engineering Journal, 2016, 293, 151-160.	6.6	10

#	Article	IF	CITATIONS
109	Optimization of the Thermal Efficiency of a Fixed-Bed Gasifier using Computational Fluid Dynamics. Computer Aided Chemical Engineering, 2018, 44, 1747-1752.	0.3	10
110	Fischer–Tropsch synthesis: The effect of hydrophobicity on silica-supported iron catalysts. Journal of Industrial and Engineering Chemistry, 2021, 97, 426-433.	2.9	10
111	The attainable region for systems with mixing and multiple-rate processes: finding optimal reactor structures. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1994, 54, 175-186.	0.1	9
112	Automating reactor network synthesis: finding a candidate attainable region for the water–gas shift (WGS) reaction. Computers and Chemical Engineering, 2004, 28, 149-160.	2.0	9
113	The Oxidative Dehydrogenation ofn-Butane in a Fixed-Bed Reactor and in an Inert Porous Membrane ReactorMaximizing the Production of Butenes and Butadiene. Industrial & Engineering Chemistry Research, 2006, 45, 2661-2671.	1.8	9
114	Conversion of Synthesis Gas to Dimethylether Over Gold-based Catalysts. Topics in Catalysis, 2012, 55, 771-781.	1.3	9
115	Distribution between C2 and C3 in low temperature Fischer–Tropsch synthesis over a TiO2-supported cobalt catalyst. Applied Catalysis A: General, 2015, 506, 67-76.	2.2	9
116	Contributing to energy sustainability: a review of mesoporous material supported catalysts for Fischer–Tropsch synthesis. Sustainable Energy and Fuels, 2021, 5, 79-107.	2.5	9
117	Insight into the role of Co2C supported on reduced graphene oxide in Fischer-Tropsch synthesis and ethene hydroformylation. Applied Catalysis A: General, 2021, 614, 118050.	2.2	9
118	Adsorptive desulfurization using period 4 transition metals oxide: A study of Lewis acid strength derived from the adsorbent ionic-covalent parameter. Chemical Engineering Journal, 2022, 444, 136484.	6.6	9
119	Can the Operating Leaves of a Distillation Column Really Be Expanded?. Industrial & Engineering Chemistry Research, 2005, 44, 7511-7519.	1.8	8
120	The oxidative dehydrogenation of n-butane in a differential side-stream catalytic membrane reactor. Catalysis Today, 2010, 156, 237-245.	2.2	8
121	Column profile maps as a tool for synthesizing complex column configurations. Computers and Chemical Engineering, 2010, 34, 1487-1496.	2.0	8
122	A new method of locating all pinch points in nonideal distillation systems, and its application to pinch point loci and distillation boundaries. Computers and Chemical Engineering, 2011, 35, 1072-1087.	2.0	8
123	Process flow sheet synthesis: Reaching targets for idealized coal gasification. AICHE Journal, 2014, 60, 3258-3266.	1.8	8
124	Experimental Simulation of Three-Dimensional Attainable Region for the Synthesis of Exothermic Reversible Reaction: Ethyl Acetate Synthesis Case Study. Industrial & Engineering Chemistry Research, 2015, 54, 2619-2626.	1.8	8
125	Application of the attainable region method to determine optimal conditions for milling and leaching. Powder Technology, 2017, 317, 400-407.	2.1	8
126	Effect of Ru-promotion on the catalytic performance of a cobalt-based Fischer-Tropsch catalyst activated in syngas or H2. Fuel, 2022, 320, 123939.	3.4	8

#	Article	IF	CITATIONS
127	Addressing the water-energy nexus: A focus on the barriers and potentials of harnessing wastewater treatment processes for biogas production in Sub Saharan Africa. Heliyon, 2022, 8, e09385.	1.4	8
128	Cobalt Catalyst Reduction Thermodynamics in Fischer Tropsch: An Attainable Region Approach. Reactions, 2020, 1, 115-129.	0.9	7
129	Recent developments in catalyst pretreatment technologies for cobalt based Fisher–Tropsch synthesis. Reviews in Chemical Engineering, 2022, 38, 503-538.	2.3	7
130	Effect of Pre-Treatment Conditions on the Activity and Selectivity of Cobalt-Based Catalysts for CO Hydrogenation. Reactions, 2021, 2, 258-274.	0.9	7
131	An experimental simulation of distillation column concentration profiles using a batch apparatus. Chemical Engineering Science, 2003, 58, 479-486.	1.9	6
132	Application of the Attainable Region Concept to the Oxidative Dehydrogenation of 1-Butene in Inert Porous Membrane Reactors. Industrial & Engineering Chemistry Research, 2004, 43, 1827-1831.	1.8	6
133	Study of Carbon Monoxide Hydrogenation Over Supported Au Catalysts. Studies in Surface Science and Catalysis, 2007, 163, 141-151.	1.5	6
134	Toward zero waste production in the paint industry. Water S A, 2007, 30, .	0.2	6
135	Crossing Reaction Equilibrium in an Adiabatic Reactor System. Asia-Pacific Journal of Chemical Engineering, 2008, 6, 41-54.	0.0	6
136	Systems approach to reducing energy usage and carbon dioxide emissions. AICHE Journal, 2009, 55, 2202-2207.	1.8	6
137	Experimental Simulation of a Two-Dimensional Attainable Region and Its Application in the Optimization of Production Rate and Process Time of an Adiabatic Batch Reactor. Industrial & Engineering Chemistry Research, 2014, 53, 13308-13319.	1.8	6
138	Batch Distillation Targets for Minimum Energy Consumption. Industrial & Engineering Chemistry Research, 2014, 53, 2751-2757.	1.8	6
139	Making processes work. Computers and Chemical Engineering, 2015, 81, 22-31.	2.0	6
140	Applying thermodynamics to digestion/gasification processes: the Attainable Region approach. Journal of Thermal Analysis and Calorimetry, 2018, 131, 25-36.	2.0	6
141	Experimental and simulation study of the temperature distribution in a <scp>benchâ€scale</scp> fixed bed <scp>Fischer–Tropsch</scp> reactor. AICHE Journal, 2021, 67, e17145.	1.8	6
142	Modulated Synthesis of a Novel Nickel-Based Metal–Organic Framework Composite Material for the Adsorptive Desulfurization of Liquid Fuels. Industrial & Engineering Chemistry Research, 2021, 60, 10997-11008.	1.8	6
143	Using the G-H space to show heat and work efficiencies associated with nitrogen plasma gasification of wood. Chemical Engineering Science, 2021, 243, 116793.	1.9	6
144	An Annual and Seasonal Characterisation of Winery Effluent in South Africa. South African Journal of Enology and Viticulture, 2016, 32, .	0.8	6

#	Article	IF	CITATIONS
145	Insight into Adsorptive Desulfurization by Zeolites: A Machine Learning Exploration. Energy & Fuels, 2022, 36, 4427-4438.	2.5	6
146	Reduced graphene oxide supported cobalt catalysts for ethylene hydroformylation: Modified cobalt-support interaction by rhodium. Fuel, 2022, 324, 124479.	3.4	6
147	A catalytic trap for low-temperature complete NO reduction in oxygen-rich media. Chemical Communications, 1996, , 2081.	2.2	5
148	A periodic flow reversal reactor: An infinitely fast switching model and a practical proposal for its implementation. Canadian Journal of Chemical Engineering, 1996, 74, 760-765.	0.9	5
149	Fischer-Tropsch synthesis: DRIFTS and SIMS surface investigation of Co and Co/Ru on titania supports. Studies in Surface Science and Catalysis, 1997, 107, 243-248.	1.5	5
150	The cost of crossing reaction equilibrium in a system that is overall adiabatic. Computers and Chemical Engineering, 2002, 26, 803-809.	2.0	5
151	An unconventional Au/TiO2 PROX system for complete removal of CO from non-reformate hydrogen. Gold Bulletin, 2008, 41, 318-325.	3.2	5
152	Reactive column profile map topology: Continuous distillation column with non-reversible kinetics. Computers and Chemical Engineering, 2008, 32, 622-629.	2.0	5
153	Efficient Combustion: A Process Synthesis Approach to Improve the Efficiency of Coal-Fired Power Stations. Industrial & Engineering Chemistry Research, 2012, 51, 9061-9077.	1.8	5
154	Production of Fuels and Chemicals from a CO2/H2 Mixture. Reactions, 2020, 1, 130-146.	0.9	5
155	Fischer-Tropsch synthesis: A long term comparative study of the product selectivity and paraffin to olefin ratios over an iron-based catalyst activated by syngas or H2. Applied Catalysis A: General, 2020, 602, 117700.	2.2	5
156	Tubular reactor internals for suppressing hot spot formation applied to the Fischer-Tropsch reaction. Chemical Engineering and Processing: Process Intensification, 2021, 161, 108309.	1.8	5
157	Attainable products for the vapour-liquid separation of homogeneous ternary mixtures. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 59, 51-70.	0.1	4
158	An anatomic and physiological model of hepatic vascular system. Journal of Applied Physiology, 1995, 79, 1008-1026.	1.2	4
159	Efficiency of Polymer Beads in the Removal of Heparin: Toward the Development of a Novel Reactor. Artificial Cells, Blood Substitutes, and Biotechnology, 2006, 34, 419-432.	0.9	4
160	Process Synthesis for a Reactorâ€Separatorâ€Recycle System using the Attainable Region Approach. Asia-Pacific Journal of Chemical Engineering, 1998, 6, 21-39.	0.0	4
161	Environmental impacts of electric vehicles in South Africa. South African Journal of Science, 2012, 108, .	0.3	4
162	Attainable regions for a reactor: Application of ΔH–ΔG plot. Chemical Engineering Research and Design, 2012, 90, 1590-1609.	2.7	4

#	Article	IF	CITATIONS
163	A thermodynamic approach toward defining the limits of biogas production. AICHE Journal, 2015, 61, 4270-4276.	1.8	4
164	Lu Plot and Yao Plot: Models To Analyze Product Distribution of Long-Term Gas-Phase Fischer–Tropsch Synthesis Experimental Data on an Iron Catalyst. Energy & Fuels, 2017, 31, 5682-5690.	2.5	4
165	Process flow sheet synthesis: Systemsâ€level design applied to synthetic crude production. AICHE Journal, 2017, 63, 5413-5424.	1.8	4
166	Recoverable acrylamide-vinylamine copolymer immobilized TEMPO mediated oxidation of cellulose with good catalytic performance and low cellulose degradation. Cellulose, 2021, 28, 4151-4164.	2.4	4
167	Analysis of the Carbon Efficiency of a Hybrid XTL-CSP process. Computer Aided Chemical Engineering, 2016, 38, 835-840.	0.3	4
168	â€~Costing' distillation systems from residue curve based designs. Computers and Chemical Engineering, 2000, 24, 1275-1280.	2.0	3
169	Expanding the operating leaves in distillation column sections by distributed feed addition and sidestream withdrawal. Computer Aided Chemical Engineering, 2003, 15, 1050-1057.	0.3	3
170	Experimental simulation of distillation concentration profiles using batch apparatus: Column stripping section. Chemical Engineering Science, 2005, 60, 6815-6823.	1.9	3
171	On Column Profile Maps: An Analysis of Sharp Splits. Industrial & Engineering Chemistry Research, 2011, 50, 6331-6342.	1.8	3
172	A Graphical Method of Improving the Production Rate from Batch Reactors. Industrial & Engineering Chemistry Research, 2012, 51, 13562-13573.	1.8	3
173	Steady-State Attainment Period for Fischer–Tropsch Products. Topics in Catalysis, 2014, 57, 582-587.	1.3	3
174	Reaction of ethylene over a typical <scp>Fischerâ€Tropsch</scp> synthesis Co/ <scp>TiO₂</scp> catalyst. Engineering Reports, 2020, 2, e12232.	0.9	3
175	Integrating environmental concerns into the teaching of mathematical optimization. Education for Chemical Engineers, 2020, 32, 40-49.	2.8	3
176	Effect of ethylene co-feeding in Fischer-Tropsch synthesis: A study of reaction equilibrium and competition. Fuel, 2021, 302, 121146.	3.4	3
177	The influence of hydrophobicity on Fischer-Tropsch synthesis catalysts. Reviews in Chemical Engineering, 2022, 38, 477-502.	2.3	3
178	Adsorption of dibenzothiophene in model diesel fuel by amarula waste biomass as a low-cost adsorbent. Journal of Environmental Management, 2022, 309, 114598.	3.8	3
179	Design of a Fischer-Tropsch multi-tube reactor fitted in a container: A novel design approach for small scale applications. Journal of Cleaner Production, 2022, 362, 132477.	4.6	3
180	Experimental Measurement of the Saddle Node Region in a Distillation Column Profile Map by Using a Batch Apparatus. Chemical Engineering Research and Design, 2007, 85, 24-30.	2.7	2

#	Article	IF	CITATIONS
181	The effect of poly-l-lysine/alginate bead membrane characteristics on the absorption of heparin. Artificial Cells, Blood Substitutes, and Biotechnology, 2009, 37, 13-22.	0.9	2
182	Candidate Attainable Regions for the Oxidative Dehydrogenation of n-Butane using the Recursive Constant Control (RCC) Policy Algorithm. Industrial & Engineering Chemistry Research, 2009, 48, 5211-5222.	1.8	2
183	An overall thermodynamic view of processes: Comparison of fuel producing processes. Chemical Engineering Research and Design, 2010, 88, 844-860.	2.7	2
184	Introducing novel graphical techniques to assess gasification. Energy Conversion and Management, 2011, 52, 547-563.	4.4	2
185	Thermodynamic considerations in renal separation processes. Theoretical Biology and Medical Modelling, 2017, 14, 2.	2.1	2
186	Modeling of an open mill with scalped feed for the maximum production of a desired particle size range. Particulate Science and Technology, 2019, 37, 314-324.	1.1	2
187	The effect of reducing gases on raw iron ore catalyst for Fischer-Tropsch synthesis. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131, 104163.	2.7	2
188	Automating Reactor Network Synthesis: Finding a Candidate Attainable Region for Water-Gas Shift(WGS) Reaction. Computer Aided Chemical Engineering, 2002, 10, 217-222.	0.3	1
189	Novel separation system design using "moving triangles― Computer Aided Chemical Engineering, 2003, , 832-839.	0.3	1
190	Feed distribution in distillation: Assessing benefits and limits with column profile maps and rigorous process simulation. AICHE Journal, 2013, 59, 1668-1683.	1.8	1
191	Ozonation of Textile Reactive Red 198 Dye in a CSTR. Journal of Advanced Oxidation Technologies, 2013, 16, .	0.5	1
192	Addressing a Design Defect. Computer Aided Chemical Engineering, 2014, 34, 134-143.	0.3	1
193	Glomerular protein separation as a mechanism for powering renal concentrating processes. Medical Hypotheses, 2015, 85, 120-123.	0.8	1
194	Determining the PGM bearing mineral phase in the UG2 ore. Powder Technology, 2017, 315, 236-242.	2.1	1
195	South Africans pioneer heat transfer technology for conversion of waste to energy. South African Journal of Science, 2017, 113, 1.	0.3	1
196	Reduction in greenhouse water usage through inlet CO 2 enrichment. AICHE Journal, 2018, 64, 2324-2328.	1.8	1
197	Thermodynamic optimization of steady-flow industrial chemical processes. International Journal of Industrial Chemistry, 2018, 9, 353-361.	3.1	1
198	A direct gasoline pre-blending of bioalcohol mixtures as a means of decreasing separation energy losses. Biofuels, 2021, 12, 615-623.	1.4	1

#	Article	IF	CITATIONS
199	Process Synthesis Targets. , 2009, , 699-708.		1
200	Thermochemical Conversion of Carbon Dioxide to Carbon Monoxide by Reverse Water-Gas Shift Reaction over the Ceria-Based Catalyst. Environmental Chemistry for A Sustainable World, 2020, , 43-61.	0.3	1
201	Enhanced catalytic activity on Co/SiO2 via hydrogenation–carburization–hydrogenation reduction procedure for synthetic fuel production. Energy Reports, 2021, , .	2.5	1
202	Insight into the relationship of redox ability and separation efficiency via the case of α-Bi2O3/Bi5NO3O7. Inorganic Chemistry Frontiers, 0, , .	3.0	1
203	Identification of an aorta background for organ scintigraphic deconvolution studies. , 0, , .		0
204	Modeling Coupled Distillation Column Sections Using Profile Maps. Computer Aided Chemical Engineering, 2002, , 211-216.	0.3	0
205	Application of process synthesis methodology to biomedical engineering for the development of artificial organs. Computer Aided Chemical Engineering, 2003, 15, 1216-1221.	0.3	0
206	MaPS (managed process synthesis). A methodology, integrated with the experimental programme, to develop a flow sheet. — A first step. Computer Aided Chemical Engineering, 2003, , 1328-1333.	0.3	0
207	DSR algorithm for construction of Attainable Region structure. Computer Aided Chemical Engineering, 2003, , 594-599.	0.3	0
208	Make distillation boundaries work for you!. Computer Aided Chemical Engineering, 2004, 18, 499-504.	0.3	0
209	A laboratory study of a reactive surface layer for the prevention of spontaneous combustion. , 2007, , \cdot		Ο
210	Adapting Process Unit Relations in Experimental Data Weighting Procedures: A Phase Equilibrium Case Study. Industrial & Engineering Chemistry Research, 2010, 49, 1975-1981.	1.8	0
211	Synthesis of Two-Membrane Permeation Processes Using Residue Curve Maps and Node Classification. Industrial & Engineering Chemistry Research, 2013, 52, 14637-14646.	1.8	Ο
212	Estimating Thermodynamic and Equilibrium Quantities of Exothermic Reversible Processes. Industrial & Engineering Chemistry Research, 2013, 52, 7630-7639.	1.8	0
213	Experimental Measurement of Membrane Residue Curve Maps. Industrial & Engineering Chemistry Research, 2013, 52, 11142-11150.	1.8	Ο
214	Designing a Waste to Energy Plant for Informal Settlements. Computer Aided Chemical Engineering, 2014, , 609-614.	0.3	0
215	Geometry and reactor synthesis: maximizing conversion of the ethyl acetate process. International Journal of Industrial Chemistry, 2015, 6, 77-83.	3.1	0
216	Batch Partial Emptying and Filling To Improve the Production Rate of Algae. Industrial & Engineering Chemistry Research, 2015, 54, 12492-12502.	1.8	0

#	Article	IF	CITATIONS
217	Quantitative modeling of a greenhouse as a bioreactor to process power station emissions. Environmental Progress and Sustainable Energy, 2018, 37, 1774-1780.	1.3	0
218	Toward Respiratory Support of Critically Ill COVID-19 Patients Using Repurposed Kidney Hollow Fiber Membrane Dialysers to Oxygenate the Blood. Journal of Healthcare Engineering, 2020, 2020, 1-6.	1.1	0
219	The interaction of CO, H2 and ethylene over a typical cobalt-based Fischer-Tropsch synthesis catalyst. Applied Catalysis A: General, 2021, 614, 118024.	2.2	0
220	Computer-aided Graphical Tools for Synthesizing Complex Column Configurations. , 2009, , 1007-1015.		0
221	A Graphical Approach to Process Synthesis Based on the Heat Engine Concept. , 2009, , 777-784.		0
222	Microbial fuel and chemical production using sweet potatoes. , 2010, , .		0
223	Water free XTL processes: Is it possible and at what cost?. Computer Aided Chemical Engineering, 2015, 37, 1265-1270.	0.3	0
224	Process Flow-Sheet Synthesis: Systems-Level Design applied to Synthetic Crude Production. Computer Aided Chemical Engineering, 2017, 40, 643-648.	0.3	0
225	The effect of pretreatment on SiO ₂ for Co-based Fischer-Tropsch synthesis catalysts: a study of the reduction pathway. Chemical Engineering Communications, 0, , 1-11.	1.5	0