Ronghua Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1376539/publications.pdf

Version: 2024-02-01

57758 71685 6,510 135 44 76 citations h-index g-index papers 135 135 135 7622 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Target-triggered hairpin-free chain-branching growth of DNA dendrimers for contrast-enhanced imaging in living cells by avoiding signal dispersion. Chinese Chemical Letters, 2022, 33, 773-777.	9.0	16
2	A pyrene-pyridyl nanooligomer as a methoxy-triggered reactive probe for highly specific fluorescence assaying of hypochlorite. Chemical Communications, 2022, , .	4.1	1
3	A Polymeric Nanobeacon for Monitoring the Fluctuation of Hydrogen Polysulfides during Fertilization and Embryonic Development. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
4	Engineering dual-responsive, exosome-surface anchored DNA nanosensor for microenvironment monitoring in vivo. Chemical Communications, 2022, , .	4.1	4
5	A near-infrared fluorogenic probe with fast response for detecting sodium dithionite in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 245, 118887.	3.9	25
6	The fluorescence imaging and precise suppression of bacterial infections in chronic wounds by porphyrin-based metal–organic framework nanorods. Journal of Materials Chemistry B, 2021, 9, 8048-8055.	5.8	10
7	Multifunctional Programmable DNA Nanotrain for Activatable Hypoxia Imaging and Mitochondrion-Targeted Enhanced Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9681-9690.	8.0	15
8	Long-Lasting Bioluminescence Imaging of the Fibroblast Activation Protein by an Amphiphilic Block Copolymer-Based Probe. Analytical Chemistry, 2021, 93, 3726-3732.	6. 5	16
9	Dual-Stimulus Responsive Near-Infrared Reversible Ratiometric Fluorescent and Photoacoustic Probe for <i>In Vivo</i> In Vivo	6.5	48
10	An Activatable Nanoenzyme Reactor for Coenhanced Chemodynamic and Starving Therapy Against Tumor Hypoxia and Antioxidant Defense System. CCS Chemistry, 2021, 3, 1217-1230.	7.8	26
11	Design and Engineering of Hypoxia and Acidic pH Dualâ€Stimuliâ€Responsive Intelligent Fluorescent Nanoprobe for Precise Tumor Imaging. Small, 2021, 17, e2100243.	10.0	44
12	Reductase and Light Programmatical Gated DNA Nanodevice for Spatiotemporally Controlled Imaging of Biomolecules in Subcellular Organelles under Hypoxic Conditions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 33894-33904.	8.0	10
13	A Glucoseâ€Powered Activatable Nanozyme Breaking pH and H ₂ O ₂ Limitations for Treating Diabetic Infections. Angewandte Chemie - International Edition, 2021, 60, 23534-23539.	13.8	96
14	Zn ²⁺ â€Coordinationâ€Driven RNA Assembly with Retained Integrity and Biological Functions. Angewandte Chemie - International Edition, 2021, 60, 22970-22976.	13.8	21
15	Zn ²⁺ â€Coordinationâ€Driven RNA Assembly with Retained Integrity and Biological Functions. Angewandte Chemie, 2021, 133, 23152-23158.	2.0	4
16	Self-Immolative Dye-Doped Polymeric Probe for Precisely Imaging Hydroxyl Radicals by Avoiding Leakage. Analytical Chemistry, 2021, 93, 12944-12953.	6.5	5
17	A Glucoseâ€Powered Activatable Nanozyme Breaking pH and H ₂ O ₂ Limitations for Treating Diabetic Infections. Angewandte Chemie, 2021, 133, 23726-23731.	2.0	4
18	Visualization of O ₂ /ATP cross-talk in living cells with a smart fluorescent nanoprobe. Chemical Communications, 2021, 57, 7786-7789.	4.1	1

#	Article	IF	CITATIONS
19	Bidirectional modulation of microRNA with a clamp-like triplex switch for enhanced and programmed gene therapy. Chemical Communications, 2021, 57, 12131-12134.	4.1	O
20	Frontispiz: A Glucoseâ€Powered Activatable Nanozyme Breaking pH and H ₂ O ₂ Limitations for Treating Diabetic Infections. Angewandte Chemie, 2021, 133, .	2.0	0
21	Frontispiece: A Glucoseâ€Powered Activatable Nanozyme Breaking pH and H ₂ O ₂ Limitations for Treating Diabetic Infections. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
22	Human serum albumin as an intrinsic signal amplification amplifier for ultrasensitive assays of the prostate-specific antigen in human plasma. Chemical Communications, 2020, 56, 1843-1846.	4.1	12
23	Achieving the ratiometric imaging of steroid sulfatase in living cells and tissues with a two-photon fluorescent probe. Chemical Communications, 2020, 56, 1349-1352.	4.1	26
24	An intramolecular catalytic hairpin assembly on a DNA tetrahedron for mRNA imaging in living cells: improving reaction kinetics and signal stability. Chemical Science, 2020, 11, 1985-1990.	7.4	147
25	Target MicroRNA-Responsive DNA Hydrogel-Based Surface-Enhanced Raman Scattering Sensor Arrays for MicroRNA-Marked Cancer Screening. Analytical Chemistry, 2020, 92, 2649-2655.	6. 5	78
26	Two-Photon Excitation/Red Emission, Ratiometric Fluorescent Nanoprobe for Intracellular pH Imaging. Analytical Chemistry, 2020, 92, 583-587.	6. 5	34
27	Hypoxia-responsive fluorescent nanoprobe for imaging and cancer therapy. TrAC - Trends in Analytical Chemistry, 2020, 131, 116010.	11.4	17
28	Thiol-suppressed I2-etching of AuNRs: acetylcholinesterase-mediated colorimetric detection of organophosphorus pesticides. Mikrochimica Acta, 2020, 187, 497.	5.0	16
29	Pt–S Bondâ€Mediated Nanoflares for Highâ€Fidelity Intracellular Applications by Avoiding Thiol Cleavage. Angewandte Chemie - International Edition, 2020, 59, 14044-14048.	13.8	79
30	Pt–S Bondâ€Mediated Nanoflares for Highâ€Fidelity Intracellular Applications by Avoiding Thiol Cleavage. Angewandte Chemie, 2020, 132, 14148-14152.	2.0	12
31	Electrochemical Reduction-Assisted <i>In Situ</i> Fabrication of a Graphene/Au Nanoparticles@polyoxometalate Nanohybrid Film: High-Performance Electrochemical Detection for Uric Acid. Langmuir, 2020, 36, 7365-7374.	3. 5	27
32	<i>In Vivo</i> Imaging of Hypoxia Associated with Inflammatory Bowel Disease by a Cytoplasmic Protein-Powered Fluorescence Cascade Amplifier. Analytical Chemistry, 2020, 92, 5787-5794.	6. 5	26
33	Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. TrAC - Trends in Analytical Chemistry, 2020, 125, 115811.	11.4	33
34	Human Serum Albumin-Occupying-Based Fluorescence Turn-On Analysis of Antiepileptic Drug Tiagabine Hydrochloride. Analytical Chemistry, 2020, 92, 3555-3562.	6.5	16
35	Establishment of a New Quantitative Evaluation Model of the Targets' Geometry Distribution for Terrestrial Laser Scanning. Sensors, 2020, 20, 555.	3.8	4
36	Al centre-powered graphitic nanozyme with high catalytic efficiency for pH-independent chemodynamic therapy of cancer. Chemical Communications, 2020, 56, 6285-6288.	4.1	26

#	Article	IF	CITATIONS
37	Substrate-Photocaged Enzymatic Fluorogenic Probe Enabling Sequential Activation for Light-Controllable Monitoring of Intracellular Tyrosinase Activity. Analytical Chemistry, 2020, 92, 7194-7199.	6.5	46
38	Visualization of Long Noncoding RNA MEG3 in Living Cells by a Triple-Helix-Powered 3D Catcher. ACS Applied Bio Materials, 2020, 3, 2588-2596.	4.6	2
39	Noncovalently Caged Firefly Luciferins Enable Amplifiable Bioluminescence Sensing of Hyaluronidase-1 Activity in Vivo. ACS Sensors, 2020, 5, 1726-1733.	7.8	16
40	Highly Sensitive Detection of Bladder Cancer-Related miRNA in Urine Using Time-Gated Luminescent Biochip. ACS Sensors, 2019, 4, 2124-2130.	7.8	55
41	Upconversion Nanoprobes for in Vitro and ex Vivo Measurement of Carbon Monoxide. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26684-26689.	8.0	22
42	Colorimetric aminotriazole assay based on catalase deactivation-dependent longitudinal etching of gold nanorods. Mikrochimica Acta, 2019, 186, 565.	5.0	12
43	Azoreductase-Responsive Metal–Organic Framework-Based Nanodrug for Enhanced Cancer Therapy via Breaking Hypoxia-induced Chemoresistance. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25740-25749.	8.0	52
44	Cytoplasmic Protein-Powered In Situ Fluorescence Amplification for Intracellular Assay of Low-Abundance Analyte. Analytical Chemistry, 2019, 91, 15179-15186.	6.5	13
45	Inâ€Situ Amplificationâ€Based Imaging of RNA in Living Cells. Angewandte Chemie - International Edition, 2019, 58, 11574-11585.	13.8	170
46	Volatile profiles of fresh rice noodles fermented with pure and mixed cultures. Food Research International, 2019, 119, 152-160.	6.2	21
47	MIL/Aptamer as a Nanosensor Capable of Resisting Nonspecific Displacement for ATP Imaging in Living Cells. ACS Omega, 2019, 4, 9074-9080.	3.5	12
48	Real-Time Visualizing Mitophagy-Specific Viscosity Dynamic by Mitochondria-Anchored Molecular Rotor. Analytical Chemistry, 2019, 91, 8574-8581.	6.5	75
49	Progress in biosensor based on DNA-templated copper nanoparticles. Biosensors and Bioelectronics, 2019, 137, 96-109.	10.1	82
50	Inâ€Situ Amplificationâ€Based Imaging of RNA in Living Cells. Angewandte Chemie, 2019, 131, 11698-11709.	2.0	46
51	Synchronous screening of multiplexed biomarkers of Alzheimer's disease by a length-encoded aerolysin nanopore-integrated triple-helix molecular switch. Chemical Communications, 2019, 55, 6433-6436.	4.1	19
52	Differentiation of Intracellular Hyaluronidase Isoform by Degradable Nanoassembly Coupled with RNA-Binding Fluorescence Amplification. Analytical Chemistry, 2019, 91, 6887-6893.	6.5	9
53	Facile Synthesis of Luminous Nanoparticles with Tunable Size and Long-Lived Luminescence for Lifetime-Based Biosensing. Crystal Growth and Design, 2019, 19, 2322-2328.	3.0	9
54	A spherical nucleic acid-based two-photon nanoprobe for RNase H activity assay in living cells and tissues. Nanoscale, 2019, 11, 8133-8137.	5.6	12

#	Article	IF	Citations
55	Oligonucleotide Cross-Linked Hydrogel for Recognition and Quantitation of MicroRNAs Based on a Portable Glucometer Readout. ACS Applied Materials & Enterfaces, 2019, 11, 7792-7799.	8.0	50
56	Nucleotide and DNA coordinated lanthanides: From fundamentals to applications. Coordination Chemistry Reviews, 2019, 387, 235-248.	18.8	54
57	Highly selective imaging of lysosomal azoreductase under hypoxia using pH-regulated and target-activated fluorescent nanoprobes. Chemical Communications, 2019, 55, 3235-3238.	4.1	26
58	A fluorescent nanoprobe based on azoreductase-responsive metal–organic frameworks for imaging VEGF mRNA under hypoxic conditions. Analyst, The, 2019, 144, 6254-6261.	3.5	22
59	Triplex-Functionalized DNA Tetrahedral Nanoprobe for Imaging of Intracellular pH and Tumor-Related Messenger RNA. Analytical Chemistry, 2019, 91, 15599-15607.	6.5	42
60	Evolving a Unique Red-Emitting Fluorophore with an Optically Tunable Hydroxy Group for Imaging Nitroreductase in Cells, in Tissues, and in Vivo. Analytical Chemistry, 2019, 91, 15974-15981.	6.5	47
61	Azoreductase-Responsive Nanoprobe for Hypoxia-Induced Mitophagy Imaging. Analytical Chemistry, 2019, 91, 1360-1367.	6.5	59
62	Natural Peptide Probe Screened for High-Performance Fluorescent Sensing of Copper Ion: Especially Sensitivity, Rapidity, and Environment-Friendliness. ACS Omega, 2019, 4, 793-800.	3.5	12
63	Azoreductase and Target Simultaneously Activated Fluorescent Monitoring for Cytochrome c Release under Hypoxia. Analytical Chemistry, 2018, 90, 5865-5872.	6.5	37
64	Use of a small molecule as an initiator for interchain staudinger reaction: A new ATP sensing platform using product fluorescence. Talanta, 2018, 178, 282-286.	5 . 5	9
65	Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering. Biosensors and Bioelectronics, 2018, 101, 167-173.	10.1	141
66	Molecular Engineering of \hat{l}_{\pm} -Substituted Acrylate Ester Template for Efficient Fluorescence Probe of Hydrogen Polysulfides. Analytical Chemistry, 2018, 90, 881-887.	6.5	43
67	Selection and Screening of DNA Aptamers for Inorganic Nanomaterials. Chemistry - A European Journal, 2018, 24, 2525-2532.	3.3	38
68	Visualizing Endogenous Sulfur Dioxide Derivatives in Febrile-Seizure-Induced Hippocampal Damage by a Two-Photon Energy Transfer Cassette. Analytical Chemistry, 2018, 90, 14514-14520.	6.5	48
69	A dsDNA-lighted fluorophore for monitoring protein-ligand interaction through binding-mediated DNA protection. Science China Chemistry, 2018, 61, 1630-1636.	8.2	4
70	"Trojan Horse―DNA Nanostructure for Personalized Theranostics: Can It Knock on the Door of Preclinical Practice?. Langmuir, 2018, 34, 15028-15044.	3.5	8
71	A Ratiometric Two-Photon Fluorescent Cysteine Probe with Well-Resolved Dual Emissions Based on Intramolecular Charge Transfer-Mediated Two-Photon-FRET Integration Mechanism. ACS Sensors, 2018, 3, 2415-2422.	7.8	81
72	Misfolding of a DNAzyme for ultrahigh sodium selectivity over potassium. Nucleic Acids Research, 2018, 46, 10262-10271.	14.5	21

#	Article	IF	CITATIONS
73	Hypoxia-triggered gene therapy: a new drug delivery system to utilize photodynamic-induced hypoxia for synergistic cancer therapy. Journal of Materials Chemistry B, 2018, 6, 6424-6430.	5.8	27
74	Programmable DNA triple-helix molecular switch in biosensing applications: from in homogenous solutions to in living cells. Chemical Communications, 2017, 53, 2507-2510.	4.1	25
75	Peptide-fluorophore/AuNP conjugate-based two-photon excited fluorescent nanosensor for caspase-3 activity imaging assay in living cells and tissue. MedChemComm, 2017, 8, 1435-1439.	3.4	9
76	Ratiometric Visualization of NO/H ₂ S Cross-Talk in Living Cells and Tissues Using a Nitroxyl-Responsive Two-Photon Fluorescence Probe. Analytical Chemistry, 2017, 89, 4587-4594.	6.5	92
77	A Target-Lighted dsDNA-Indicator for High-Performance Monitoring of Mercury Pollution and Its Antagonists Screening. Environmental Science & Environme	10.0	15
78	Noninvasive and Highly Selective Monitoring of Intracellular Glucose via a Two-Step Recognition-Based Nanokit. Analytical Chemistry, 2017, 89, 8319-8327.	6.5	18
79	Direct Detection of Nucleic Acid with Minimizing Background and Improving Sensitivity Based on a Conformation-Discriminating Indicator. ACS Sensors, 2017, 2, 1198-1204.	7.8	14
80	Technologies for analysis of circulating tumour DNA: Progress and promise. TrAC - Trends in Analytical Chemistry, 2017, 97, 36-49.	11.4	20
81	Filling in the Gaps between Nanozymes and Enzymes: Challenges and Opportunities. Bioconjugate Chemistry, 2017, 28, 2903-2909.	3.6	290
82	Detection of Circulating Tumor DNA in Human Blood via DNA-Mediated Surface-Enhanced Raman Spectroscopy of Single-Walled Carbon Nanotubes. Analytical Chemistry, 2016, 88, 4759-4765.	6.5	98
83	A theranostic agent for inÂvivo near-infrared imaging of \hat{l}^2 -amyloid species and inhibition of \hat{l}^2 -amyloid aggregation. Biomaterials, 2016, 94, 84-92.	11.4	79
84	Target-Activated Modulation of Dual-Color and Two-Photon Fluorescence of Graphene Quantum Dots for in Vivo Imaging of Hydrogen Peroxide. Analytical Chemistry, 2016, 88, 4833-4840.	6.5	77
85	SERS monitoring the dynamics of local pH in lysosome of living cells during photothermal therapy. Analyst, The, 2016, 141, 3224-3227.	3.5	26
86	Visual Biopsy by Hydrogen Peroxide-Induced Signal Amplification. Analytical Chemistry, 2016, 88, 10728-10735.	6.5	14
87	Direct Fluorescent Detection of Blood Potassium by Ion-Selective Formation of Intermolecular G-Quadruplex and Ligand Binding. Analytical Chemistry, 2016, 88, 9285-9292.	6.5	63
88	A Reversible Nanolamp for Instantaneous Monitoring of Cyanide Based on an Elsner-Like Reaction. Analytical Chemistry, 2016, 88, 9759-9765.	6.5	26
89	A TP-FRET-based two-photon fluorescent probe for ratiometric visualization of endogenous sulfur dioxide derivatives in mitochondria of living cells and tissues. Chemical Communications, 2016, 52, 10289-10292.	4.1	110
90	Quantitative Monitoring of Hypoxia-Induced Intracellular Acidification in Lung Tumor Cells and Tissues Using Activatable Surface-Enhanced Raman Scattering Nanoprobes. Analytical Chemistry, 2016, 88, 11852-11859.	6.5	29

#	Article	IF	Citations
91	A novel SERS nanoprobe for the ratiometric imaging of hydrogen peroxide in living cells. Chemical Communications, 2016, 52, 8553-8556.	4.1	85
92	In situ formation of fluorescent copper nanoparticles for ultrafast zero-background Cu 2+ detection and its toxicides screening. Biosensors and Bioelectronics, 2016, 78, 471-476.	10.1	87
93	Fabrication of an electrochemical sensor based on spiropyran for sensitive and selective detection of fluoride ion. Analytica Chimica Acta, 2016, 918, 97-102.	5.4	44
94	<i>In Vivo</i> Lighted Fluorescence <i>via</i> Fenton Reaction: Approach for Imaging of Hydrogen Peroxide in Living Systems. Analytical Chemistry, 2016, 88, 3998-4003.	6.5	45
95	SERS assay of telomerase activity at single-cell level and colon cancer tissues via quadratic signal amplification. Biosensors and Bioelectronics, 2016, 77, 673-680.	10.1	53
96	Engineering a nanolab for the determination of lysosomal nitric oxide by the rational design of a pH-activatable fluorescent probe. Chemical Science, 2016, 7, 1920-1925.	7.4	43
97	Hemicyanine-based High Resolution Ratiometric near-Infrared Fluorescent Probe for Monitoring pH Changes in Vivo. Analytical Chemistry, 2015, 87, 2495-2503.	6.5	215
98	Silver Nanoparticle Gated, Mesoporous Silica Coated Gold Nanorods (AuNR@MS@AgNPs): Low Premature Release and Multifunctional Cancer Theranostic Platform. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6211-6219.	8.0	92
99	Initial Study on Information Quantity of Point Cloud. Journal of the Indian Society of Remote Sensing, 2015, 43, 243-258.	2.4	6
100	Sensitive and rapid detection of endogenous hydrogen sulï¬de distributing in different mouse viscera via a two-photon fluorescent probe. Analytica Chimica Acta, 2015, 896, 128-136.	5.4	29
101	Targeted Intracellular Controlled Drug Delivery and Tumor Therapy through in Situ Forming Ag Nanogates on Mesoporous Silica Nanocontainers. ACS Applied Materials & Interfaces, 2015, 7, 11930-11938.	8.0	44
102	Rationally designed molecular beacons for bioanalytical and biomedical applications. Chemical Society Reviews, 2015, 44, 3036-3055.	38.1	306
103	DNA-templated in situ growth of silver nanoparticles on mesoporous silica nanospheres for smart intracellular GSH-controlled release. Chemical Communications, 2015, 51, 6544-6547.	4.1	24
104	A novel AgNP/DNA/TPdye conjugate-based two-photon nanoprobe for GSH imaging in cell apoptosis of cancer tissue. Chemical Communications, 2015, 51, 16810-16812.	4.1	28
105	Two-Photon Sensing and Imaging of Endogenous Biological Cyanide in Plant Tissues Using Graphene Quantum Dot/Gold Nanoparticle Conjugate. ACS Applied Materials & Enterfaces, 2015, 7, 19509-19515.	8.0	59
106	A new enzyme-free quadratic SERS signal amplification approach for circulating microRNA detection in human serum. Chemical Communications, 2015, 51, 16271-16274.	4.1	62
107	Remote-Controlled Release of DNA in Living Cells via Simultaneous Light and Host–Guest Mediations. Analytical Chemistry, 2014, 86, 10208-10214.	6.5	22
108	Design of multiplex logic gates: Combining regulation of DNA structure with logical calculation. Science China Chemistry, 2014, 57, 453-458.	8.2	2

#	Article	IF	Citations
109	Colorimetric detection of ATP with DNAzyme: design an activatable hairpin probe for reducing background signals and improving selectivity. Analytical Methods, 2014, 6, 3219-3222.	2.7	5
110	Poly \hat{l}^2 -cyclodextrin inclusion-induced formation of two-photon fluorescent nanomicelles for biomedical imaging. Chemical Communications, 2014, 50, 8398-8401.	4.1	35
111	Poly \hat{I}^2 -Cyclodextrin/TPdye Nanomicelle-based Two-Photon Nanoprobe for Caspase-3 Activation Imaging in Live Cells and Tissues. Analytical Chemistry, 2014, 86, 11440-11450.	6.5	48
112	Competitive Assembly To Increase the Performance of the DNA/Carbon-Nanomaterial-Based Sensing Platform. ACS Applied Materials & Samp; Interfaces, 2014, 6, 13470-13477.	8.0	10
113	A new strategy for fluorometric detection of ascorbic acid based on hydrolysis and redox reaction. RSC Advances, 2014, 4, 35112.	3.6	17
114	Development of spiropyran-based electrochemical sensor via simultaneous photochemical and target-activatable electron transfer. Biosensors and Bioelectronics, 2014, 62, 151-157.	10.1	23
115	Universal Surface-Enhanced Raman Scattering Amplification Detector for Ultrasensitive Detection of Multiple Target Analytes. Analytical Chemistry, 2014, 86, 2205-2212.	6.5	103
116	Design of a Simultaneous Target and Location-Activatable Fluorescent Probe for Visualizing Hydrogen Sulfide in Lysosomes. Analytical Chemistry, 2014, 86, 7508-7515.	6.5	134
117	Two-Photon Graphene Oxide/Aptamer Nanosensing Conjugate for <i>In Vitro</i> or <i>In Vivo</i> Molecular Probing. Analytical Chemistry, 2014, 86, 3548-3554.	6.5	101
118	Graphene Oxide Assisted Fluorescent Chemodosimeter for High-Performance Sensing and Bioimaging of Fluoride Ions. ACS Applied Materials & Interfaces, 2014, 6, 9768-9775.	8.0	44
119	A Spherical Nucleic Acid Platform Based on Self-Assembled DNA Biopolymer for High-Performance Cancer Therapy. ACS Nano, 2013, 7, 6545-6554.	14.6	91
120	Electropolymerization of polyaniline in ionic liquid ([bmim]PF ₆)/water microemulsion. Journal of Experimental Nanoscience, 2013, 8, 103-112.	2.4	9
121	Fabricating a Reversible and Regenerable Raman-Active Substrate with a Biomolecule-Controlled DNA Nanomachine. Journal of the American Chemical Society, 2012, 134, 19957-19960.	13.7	110
122	Design of Aptamer-Based Sensing Platform Using Triple-Helix Molecular Switch. Analytical Chemistry, 2011, 83, 6586-6592.	6.5	161
123	Simultaneous Intracellular \hat{l}^2 - <scp>d</scp> -Glucosidase and Phosphodiesterase I Activities Measurements Based on A Triple-Signaling Fluorescent Probe. Analytical Chemistry, 2011, 83, 1268-1274.	6.5	64
124	DNA template-synthesized silver nanoparticles: A new platform for high-performance fluorescent biosensing of biothiols. Science China Chemistry, 2011, 54, 1266-1272.	8.2	14
125	Fluorescent detection of singlet oxygen: Amplifying signal transduction and improving sensitivity based on intramolecular FRET of anthryl appended porphyrins. Science Bulletin, 2011, 56, 3253.	1.7	10
126	A fluorescent sensing membrane for iodine based on intramolecular excitation energy transfer of anthryl appended porphyrin. Science in China Series B: Chemistry, 2009, 52, 793-801.	0.8	5

#	Article	IF	CITATIONS
127	Reversible molecular switching of molecular beacon: controlling DNA hybridization kinetics and thermodynamics using mercury(ii) ions. Chemical Communications, 2009, , 322-324.	4.1	73
128	Carbon Nanotube-Quenched Fluorescent Oligonucleotides: Probes that Fluoresce upon Hybridization. Journal of the American Chemical Society, 2008, 130, 8351-8358.	13.7	541
129	Utilization of a spiropyran derivative in a polymeric film optode for selective fluorescent sensing of zinc ion. Science in China Series B: Chemistry, 2006, 49, 246-255.	0.8	12
130	Rayleigh light scattering study on the supramolecular interactions of \hat{l}^2 -cyclodextrin derivatives with tetrakis(4-methoxylphenyl)porphyrin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2003, 59, 153-161.	3.9	12
131	Porphyrin Assembly on \hat{I}^2 -Cyclodextrin for Selective Sensing and Detection of a Zinc Ion Based on the Dual Emission Fluorescence Ratio. Analytical Chemistry, 2003, 75, 612-621.	6.5	173
132	3,3â€~,5,5â€~-Tetramethyl-N-(9-anthrylmethyl)benzidine: A Dual-Signaling Fluorescent Reagent for Optical Sensing of Aliphatic Aldehydes. Analytical Chemistry, 2003, 75, 3908-3914.	6.5	32
133	A Selective Optode Membrane for Histidine Based on Fluorescence Enhancement of Mesoâ^'Meso-Linked Porphyrin Dimer. Analytical Chemistry, 2002, 74, 1088-1096.	6.5	74
134	Determination of low-level mercury based on a renewable-drops sensing technique. Fresenius' Journal of Analytical Chemistry, 2000, 368, 797-802.	1.5	8
135	A Polymeric Nanobeacon for Monitoring the Fluctuation of Hydrogen Polysulfides During Fertilization and Embryonic Development. Angewandte Chemie, 0, , .	2.0	0