Xing Wang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1376474/publications.pdf

Version: 2024-02-01

73 papers 11,889 citations

33 h-index 72 g-index

76 all docs 76 docs citations

76 times ranked 11392 citing authors

#	Article	IF	CITATIONS
1	Domain matching epitaxy stabilized metastable, tetragonal BiFeO3 on symmetry-mismatched c-plane ZnO. Japanese Journal of Applied Physics, 2022, 61, 025501.	1.5	O
2	Low-Temperature Direct Growth of Few-Layer Hexagonal Boron Nitride on Catalyst-Free Sapphire Substrates. ACS Applied Materials & Substrates. Provided Hexagonal Boron Nitride on Catalyst-Free Sapphire Substrates. ACS Applied Materials & Substrates. Provided Hexagonal Boron Nitride on Catalyst-Free Sapphire Substrates. ACS Applied Materials & Substrates. Provided Hexagonal Boron Nitride on Catalyst-Free Sapphire Substrates. Provided Hexagonal Boron Nitride on Catalyst-Free Sapphire Substrates. ACS Applied Materials & Substrates. Provided Hexagonal Boron Nitride on Catalyst-Free Sapphire Substrates. Provided Hexagonal Provided H	8.0	24
3	Amplified Spontaneous Emission with a Low Threshold from Quasiâ€2D Perovskite Films via Phase Engineering and Surface Passivation. Advanced Optical Materials, 2022, 10, .	7.3	15
4	Mode-locking operation of an Er-doped fiber laser with (PEA) < sub>2 < /sub> (CsPbBr < sub>3 < /sub>) < sub> <i>>n < /i> /i> â^1 < /sub> PbBr < sub> 4 < /sub> perovskite saturable absorbers. Journal of Materials Chemistry C, 2022, 10, 7504-7510.</i>	5 . 5	6
5	Epitaxial growth of large area ZrS2 2D semiconductor films on sapphire for optoelectronics. Nano Research, 2022, 15, 6628-6635.	10.4	9
6	Nickel oxide for inverted structure perovskite solar cells. Journal of Energy Chemistry, 2021, 52, 393-411.	12.9	132
7	Emerging Lowâ€Dimensional Crystal Structure of Metal Halide Perovskite Optoelectronic Materials and Devices. Small Structures, 2021, 2, 2000133.	12.0	33
8	Perovskite Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 22% via Smallâ€Molecule Passivation. Advanced Materials, 2021, 33, e2007169.	21.0	211
9	Persistent spin texture in tetragonal BiFeO3. Japanese Journal of Applied Physics, 2021, 60, 050906.	1.5	5
10	Metastable Tetragonal BiFeO3 Stabilized on Anisotropic a-Plane ZnO. Crystal Growth and Design, 2021, 21, 4372-4379.	3.0	3
11	Epitaxial growth of ZrSe ₂ nanosheets on sapphire <i>via</i> chemical vapor deposition for optoelectronic application. Journal of Materials Chemistry C, 2021, 9, 13954-13962.	5.5	7
12	Stabilization of thick, rhombohedral Hf0.5Zr0.5O2 epilayer on c-plane ZnO. Applied Physics Letters, 2021, 119, .	3.3	9
13	Direct growth of hexagonal boron nitride films on dielectric sapphire substrates by pulsed laser deposition for optoelectronic applications. Fundamental Research, 2021, 1, 677-683.	3.3	23
14	Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902650.	19.5	516
15	Stabilizing γ sPbl ₃ Perovskite via Phenylethylammonium for Efficient Solar Cells with Open ircuit Voltage over 1.3ÂV. Small, 2020, 16, e2005246.	10.0	67
16	Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes. Nature Communications, 2020, 11, 4165.	12.8	217
17	Deep Ultraviolet Photodetectors Based on Carbon-Doped Two-Dimensional Hexagonal Boron Nitride. ACS Applied Materials & Diterfaces, 2020, 12, 27361-27367.	8.0	37
18	Polymer hole-transport material improving thermal stability of inorganic perovskite solar cells. Frontiers of Optoelectronics, 2020, 13, 265-271.	3.7	10

#	Article	lF	Citations
19	Research progress in large-area perovskite solar cells. Photonics Research, 2020, 8, A1.	7.0	37
20	Compositional Engineering of Mixed-Cation Lead Mixed-Halide Perovskites for High-Performance Photodetectors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28005-28012.	8.0	27
21	Recent Progress in Highâ€efficiency Planarâ€structure Perovskite Solar Cells. Energy and Environmental Materials, 2019, 2, 93-106.	12.8	45
22	Cesium Lead Inorganic Solar Cell with Efficiency beyond 18% via Reduced Charge Recombination. Advanced Materials, 2019, 31, e1905143.	21.0	202
23	Recent progress of boron nitrides. , 2019, , 347-419.		7
24	Stabilizing the black phase of cesium lead halide inorganic perovskite for efficient solar cells. Science China Chemistry, 2019, 62, 810-821.	8.2	40
25	Effects of Organic Cations on the Structure and Performance of Quasi-Two-Dimensional Perovskite-Based Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2019, 10, 2892-2897.	4.6	56
26	Remote heteroepitaxy of atomic layered hafnium disulfide on sapphire through hexagonal boron nitride. Nanoscale, 2019, 11, 9310-9318.	5.6	20
27	Two-dimensional hexagonal boron–carbon–nitrogen atomic layers. Nanoscale, 2019, 11, 10454-10462.	5.6	34
28	Epitaxial Liftoff of Waferâ€Scale VO ₂ Nanomembranes for Flexible, Ultrasensitive Tactile Sensors. Advanced Materials Technologies, 2019, 4, 1800695.	5.8	30
29	Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 2019, 13, 460-466.	31.4	3,458
30	Homogeneous InGaSb crystal grown under microgravity using Chinese recovery satellite SJ-10. Npj Microgravity, 2019, 5, 8.	3.7	12
31	Catalyst-free growth of two-dimensional hexagonal boron nitride few-layers on sapphire for deep ultraviolet photodetectors. Journal of Materials Chemistry C, 2019, 7, 14999-15006.	5 . 5	53
32	Recent progress in synthesis, properties, and applications of hexagonal boron nitride-based heterostructures. Nanotechnology, 2019, 30, 074003.	2.6	31
33	Controlled Growth of Unidirectionally Aligned Hexagonal Boron Nitride Domains on Single Crystal Ni (111)/MgO Thin Films. Crystal Growth and Design, 2019, 19, 453-459.	3.0	3
34	High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride. Nanoscale, 2018, 10, 5559-5565.	5.6	144
35	Interface Engineering of High-Performance Perovskite Photodetectors Based on PVP/SnO ₂ Electron Transport Layer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 6505-6512.	8.0	37
36	Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nature Communications, 2018, 9, 570.	12.8	763

#	Article	IF	Citations
37	Self-Seeded MOCVD Growth and Dramatically Enhanced Photoluminescence of InGaAs/InP Core–Shell Nanowires. Nanoscale Research Letters, 2018, 13, 269.	5.7	5
38	Largeâ€Area Synthesis of Layered HfS _{2(1â^²} <i>_x</i> <fub>>(i>₎Se₂<i>_x</i><ful>Fully Tunable Chemical Compositions and Bandgaps. Advanced Materials, 2018, 30, e1803285.</ful></fub>	21.0	41
39	Selective Direct Growth of Atomic Layered HfS ₂ on Hexagonal Boron Nitride for High Performance Photodetectors. Chemistry of Materials, 2018, 30, 3819-3826.	6.7	51
40	SnO ₂ : A Wonderful Electron Transport Layer for Perovskite Solar Cells. Small, 2018, 14, e1801154.	10.0	639
41	Recent Advances in Properties, Synthesis and Applications of Two-Dimensional HfS ₂ . Journal of Nanoscience and Nanotechnology, 2018, 18, 7319-7334.	0.9	19
42	Defect-free InAsSb nanowire arrays on Si substrates grown by selective-area metal–organic chemical vapor deposition. Nanotechnology, 2018, 29, 405601.	2.6	5
43	Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature Communications, 2018, 9, 2225.	12.8	526
44	Enhanced piezoelectric response of the two-tetragonal-phase-coexisted BiFeO 3 epitaxial film. Solid State Communications, 2017, 252, 68-72.	1.9	9
45	Aligned Growth of Millimeterâ€Size Hexagonal Boron Nitride Singleâ€Crystal Domains on Epitaxial Nickel Thin Film. Small, 2017, 13, 1604179.	10.0	76
46	Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communications, 2017, 8, 15640.	12.8	669
47	Planarâ€Structure Perovskite Solar Cells with Efficiency beyond 21%. Advanced Materials, 2017, 29, 1703852.	21.0	1,003
48	Epitaxial growth of HfS ₂ on sapphire by chemical vapor deposition and application for photodetectors. 2D Materials, 2017, 4, 031012.	4.4	43
49	A high-performance photodetector based on an inorganic perovskite–ZnO heterostructure. Journal of Materials Chemistry C, 2017, 5, 6115-6122.	5. 5	107
50	Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nature Energy, 2017, 2, .	39.5	1,633
51	Controlled-Direction Growth of Planar InAsSb Nanowires on Si Substrates without Foreign Catalysts. Nano Letters, 2016, 16, 877-882.	9.1	29
52	Synthesis of Largeâ€Sized Singleâ€Crystal Hexagonal Boron Nitride Domains on Nickel Foils by Ion Beam Sputtering Deposition. Advanced Materials, 2015, 27, 8109-8115.	21.0	74
53	Enhanced efficiency in polymer solar cells via hydrogen plasma treatment of ZnO electron transport layers. Journal of Materials Chemistry A, 2015, 3, 3719-3725.	10.3	16
54	Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process. Journal of Materials Chemistry A, 2015, 3, 12133-12138.	10.3	86

#	Article	IF	CITATIONS
55	Formation and local conduction of nanopits in BiFeO ₃ epitaxial films. Journal of Materials Chemistry C, 2015, 3, 11250-11256.	5 . 5	10
56	Self-catalyzed growth mechanism of InAs nanowires and growth of InAs/GaSb heterostructured nanowires on Si substrates. Journal of Crystal Growth, 2015, 426, 287-292.	1.5	25
57	Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition. Nanoscale, 2015, 7, 16046-16053.	5.6	68
58	Controlled Growth of Few‣ayer Hexagonal Boron Nitride on Copper Foils Using Ion Beam Sputtering Deposition. Small, 2015, 11, 1542-1547.	10.0	70
59	Electrical properties of sulfur-implanted cubic boron nitride thin films. Science Bulletin, 2014, 59, 1280-1284.	1.7	8
60	Synthesis of silver quantum dots decorated TiO2 nanotubes and their incorporation in organic hybrid solar cells. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	2
61	Conjugated molecule doped polyaniline films as buffer layers in organic solar cells. Synthetic Metals, 2013, 178, 18-21.	3.9	6
62	Ag nanoparticles preparation and their light trapping performance. Science China Technological Sciences, 2013, 56, 109-114.	4.0	8
63	Improved performance of GaAs-based micro-solar cell with novel polyimide/SiO2/TiAu/SiO2 structure. Science China Technological Sciences, 2011, 54, 830-834.	4.0	1
64	Analysis of leakage current in GaAs micro-solar cell arrays. Science China Technological Sciences, 2010, 53, 1240-1246.	4.0	9
65	Quantifying the effectiveness of SiO2/Au light trapping nanoshells for thin film poly-Si solar cells. Science China Technological Sciences, 2010, 53, 2228-2231.	4.0	3
66	Evaluating the effect of dislocation on the photovoltaic performance of metamorphic tandem solar cells. Science China Technological Sciences, 2010, 53, 2569-2574.	4.0	8
67	Aluminum induced crystallization of strongly (111) oriented polycrystalline silicon thin film and nucleation analysis. Science China Technological Sciences, 2010, 53, 3002-3005.	4.0	5
68	Electrical bistability and negative differential resistance in diodes based on silver nanoparticle-poly(N-vinylcarbazole) composites. Journal of Applied Physics, 2010, 108, 094320.	2.5	13
69	Quantum efficiency and temperature coefficients of GalnP/GaAs dual-junction solar cell. Science in China Series D: Earth Sciences, 2009, 52, 1176-1180.	0.9	14
70	Enhanced Proton Conduction in Polymer Electrolyte Membranes as Synthesized by Polymerization of Protic Ionic Liquid-Based Microemulsions. Chemistry of Materials, 2009, 21, 1480-1484.	6.7	142
71	Enhancement of conductivity and photoluminescence in sulphur-doped C60 thin films. Journal of Materials Science Letters, 2001, 20, 449-451.	0.5	1
72	Optical absorption edge characteristics of cubic boron nitride thin films. Applied Physics Letters, 1999, 75, 10-12.	3.3	41

#	Article	IF	CITATIONS
73	Absence of auxeticity in CoFe $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 4 $<$ /sub $>$ epitaxial films. Japanese Journal of Applied Physics, 0, , .	1.5	1