Li-Jun You

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1376395/publications.pdf

Version: 2024-02-01

101 papers	5,475 citations	40 h-index	91712 69 g-index
101	101	101	4713 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Changes in the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates during a simulated gastrointestinal digestion. Food Chemistry, 2010, 120, 810-816.	4.2	261
2	In vitro antioxidant activity and in vivo anti-fatigue effect of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion. Food Chemistry, 2011, 124, 188-194.	4.2	244
3	Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro. Carbohydrate Polymers, 2015, 130, 122-132.	5.1	230
4	Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative Food Science and Emerging Technologies, 2009, 10, 235-240.	2.7	211
5	Purification and identification of antioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Research International, 2010, 43, 1167-1173.	2.9	190
6	Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro. Food and Function, 2016, 7, 530-539.	2.1	155
7	Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities. Carbohydrate Polymers, 2017, 173, 192-201.	5.1	155
8	Structural characterization and macrophage immunomodulatory activity of a polysaccharide isolated from Gracilaria lemaneiformis. Journal of Functional Foods, 2017, 33, 286-296.	1.6	148
9	Structural characterisation of polysaccharides from Tricholoma matsutake and their antioxidant and antitumour activities. Food Chemistry, 2013, 138, 2242-2249.	4.2	145
10	Characterization, antioxidant and immunomodulatory activities of polysaccharides from Prunella vulgaris Linn. International Journal of Biological Macromolecules, 2015, 75, 298-305.	3.6	142
11	Modulation of gut microbiota by mulberry fruit polysaccharide treatment of obese diabetic <i>db</i> /ci>db/si>db/i>mice. Food and Function, 2018, 9, 3732-3742.	2.1	116
12	Fractionation, preliminary structural characterization and bioactivities of polysaccharides from Sargassum pallidum. Carbohydrate Polymers, 2017, 155, 261-270.	5.1	106
13	Phenolic contents and cellular antioxidant activity of Chinese hawthorn "Crataegus pinnatifida― Food Chemistry, 2015, 186, 54-62.	4.2	104
14	The digestibility of mulberry fruit polysaccharides and its impact on lipolysis under simulated saliva, gastric and intestinal conditions. Food Hydrocolloids, 2016, 58, 171-178.	5.6	101
15	Isolation and Characterization of an Oxygen Radical Absorbance Activity Peptide from Defatted Peanut Meal Hydrolysate and Its Antioxidant Properties. Journal of Agricultural and Food Chemistry, 2012, 60, 5431-5437.	2.4	97
16	Physicochemical properties and bioactivity of whey protein isolate-inulin conjugates obtained by Maillard reaction. International Journal of Biological Macromolecules, 2020, 150, 326-335.	3.6	94
17	Effect of polysaccharides from Tremella fuciformis on UV-induced photoaging. Journal of Functional Foods, 2016, 20, 400-410.	1.6	92
18	Antioxidant and Antiproliferative Activities of Loach (Misgurnus anguillicaudatus) Peptides Prepared by Papain Digestion. Journal of Agricultural and Food Chemistry, 2011, 59, 7948-7953.	2.4	83

#	Article	IF	Citations
19	Optimization for the extraction of polysaccharides from Ganoderma lucidum and their antioxidant and antiproliferative activities. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 886-894.	2.7	83
20	A sulfated polysaccharide from (i) Gracilaria Lemaneiformis (i) regulates cholesterol and bile acid metabolism in high-fat diet mice. Food and Function, 2019, 10, 3224-3236.	2.1	79
21	Identification of phenolics in litchi and evaluation of anticancer cell proliferation activity and intracellular antioxidant activity. Free Radical Biology and Medicine, 2015, 84, 171-184.	1.3	78
22	Structural properties and protective effect of Sargassum fusiforme polysaccharides against ultraviolet B radiation in hairless Kun Ming mice. Journal of Functional Foods, 2018, 43, 8-16.	1.6	76
23	In vitro digestibility and prebiotic activities of a sulfated polysaccharide from Gracilaria Lemaneiformis. Journal of Functional Foods, 2020, 64, 103652.	1.6	74
24	Comparative study on the physicochemical properties and bioactivities of polysaccharide fractions extracted from <i>Fructus Mori</i> at different temperatures. Food and Function, 2019, 10, 410-421.	2.1	67
25	Antioxidant/antihyperglycemic activity of phenolics from sugarcane (Saccharum officinarum L.) bagasse and identification by UHPLC-HR-TOFMS. Industrial Crops and Products, 2017, 101, 104-114.	2.5	62
26	A comparison study on polysaccharides extracted from <i>Fructus Mori</i> using different methods: structural characterization and glucose entrapment. Food and Function, 2019, 10, 3684-3695.	2.1	61
27	Polysaccharide from Gracilaria Lemaneiformis prevents colitis in Balb/c mice via enhancing intestinal barrier function and attenuating intestinal inflammation. Food Hydrocolloids, 2020, 109, 106048.	5.6	61
28	Antioxidant capacity of anthocyanins from Rhodomyrtus tomentosa (Ait.) and identification of the major anthocyanins. Food Chemistry, 2013, 139, 1-8.	4.2	60
29	Ultrasonic extraction and structural identification of polysaccharides from Prunella vulgaris and its antioxidant and antiproliferative activities. European Food Research and Technology, 2015, 240, 49-60.	1.6	59
30	Release of phenolic compounds and antioxidant capacity of Chinese hawthorn "Crataegus pinnatifida― during in vitro digestion. Journal of Functional Foods, 2018, 40, 76-85.	1.6	58
31	Degradation of polysaccharides from Sargassum fusiforme using UV/H2O2 and its effects on structural characteristics. Carbohydrate Polymers, 2020, 230, 115647.	5.1	57
32	The chemical structure and biological activities of a novel polysaccharide obtained from Fructus Mori and its zinc derivative. Journal of Functional Foods, 2019, 54, 64-73.	1.6	54
33	Free radical-mediated degradation of polysaccharides: Mechanism of free radical formation and degradation, influence factors and product properties. Food Chemistry, 2021, 365, 130524.	4.2	54
34	Antifatigue Activities of Loach Protein Hydrolysates with Different Antioxidant Activities. Journal of Agricultural and Food Chemistry, 2012, 60, 12324-12331.	2.4	53
35	A full utilization of rice husk to evaluate phytochemical bioactivities and prepare cellulose nanocrystals. Scientific Reports, 2018, 8, 10482.	1.6	52
36	Chemical and cellular antioxidant activity of two novel peptides designed based on glutathione structure. Food and Chemical Toxicology, 2012, 50, 4085-4091.	1.8	47

#	Article	IF	CITATIONS
37	The antioxidant capacity of polysaccharide from <i><scp>L</scp>aminaria japonica</i> by citric acid extraction. International Journal of Food Science and Technology, 2013, 48, 1352-1358.	1.3	47
38	Chemistry and immunostimulatory activity of a polysaccharide from Undaria pinnatifida. Food and Chemical Toxicology, 2019, 128, 119-128.	1.8	47
39	Ultrasound-assited extraction and structural identification of polysaccharides from Isodon lophanthoides var. gerardianus (Bentham) H. Hara. Carbohydrate Polymers, 2011, 85, 541-547.	5.1	46
40	Structural identification of compounds from Toona sinensis leaves with antioxidant and anticancer activities. Journal of Functional Foods, 2014, 10, 427-435.	1.6	44
41	Changes of digestive and fermentation properties of Sargassum pallidum polysaccharide after ultrasonic degradation and its impacts on gut microbiota. International Journal of Biological Macromolecules, 2020, 164, 1443-1450.	3.6	44
42	The possible mechanism of the protective effect of a sulfated polysaccharide from Gracilaria Lemaneiformis against colitis induced by dextran sulfate sodium in mice. Food and Chemical Toxicology, 2021, 149, 112001.	1.8	43
43	Advantages of the polysaccharides from Gracilaria lemaneiformis over metformin in antidiabetic effects on streptozotocin-induced diabetic mice. RSC Advances, 2017, 7, 9141-9151.	1.7	40
44	Enzymatic acylation of cyanidin-3-glucoside with fatty acid methyl esters improves stability and antioxidant activity. Food Chemistry, 2021, 343, 128482.	4.2	40
45	In vitro fermentation characteristics of polysaccharide from Sargassum fusiforme and its modulation effects on gut microbiota. Food and Chemical Toxicology, 2021, 151, 112145.	1.8	40
46	Structural characterization and immunomodulatory activity of a new heteropolysaccharide from Prunella vulgaris. Food and Function, 2015, 6, 1557-1567.	2.1	39
47	Beneficial effects of three brown seaweed polysaccharides on gut microbiota and their structural characteristics: An overview. International Journal of Food Science and Technology, 2020, 55, 1199-1206.	1.3	39
48	Effects of supplementation with grass carp protein versus peptide on swimming endurance in mice. Nutrition, 2011, 27, 789-795.	1.1	38
49	Preparation of Prunella vulgaris polysaccharide-zinc complex and its antiproliferative activity in HepG2 cells. International Journal of Biological Macromolecules, 2016, 91, 671-679.	3.6	38
50	Major triterpenoids in Chinese hawthorn "Crataegus pinnatifida―and their effects on cell proliferation and apoptosis induction in MDA-MB-231 cancer cells. Food and Chemical Toxicology, 2017, 100, 149-160.	1.8	37
51	Purification and identification of antioxidant peptides from round scad (Decapterus maruadsi) hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food and Chemical Toxicology, 2020, 135, 110882.	1.8	37
52	Effect of germination on vitamin C, phenolic compounds and antioxidant activity in flaxseed (<i>Linum) Tj ETQq(</i>	0 0 _{1.3} rgBT	Ogerlock 10
53	Protective effect of polysaccharides from Sargassum fusiforme against UVB-induced oxidative stress in HaCaT human keratinocytes. Journal of Functional Foods, 2017, 36, 332-340.	1.6	36
54	Whole Grain Brown Rice Extrudate Ameliorates the Symptoms of Diabetes by Activating the IRS1/PI3K/AKT Insulin Pathway in db/db Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 11657-11664.	2.4	36

#	Article	IF	CITATIONS
55	Hydrogen Peroxide Effects on Natural-Sourced Polysacchrides: Free Radical Formation/Production, Degradation Process, and Reaction Mechanism—A Critical Synopsis. Foods, 2021, 10, 699.	1.9	36
56	Behavior of Nonâ€Digestible Polysaccharides in Gastrointestinal Tract: A Mechanistic Review of its Antiâ€Obesity Effect. EFood, 2021, 2, 59-72.	1.7	35
57	Chemical property and impacts of different polysaccharide fractions from Fructus Mori. on lipolysis with digestion model in vitro. Carbohydrate Polymers, 2017, 178, 360-367.	5.1	34
58	The effects of dietary fibers from rice bran and wheat bran on gut microbiota: An overview. Food Chemistry: X, 2022, 13, 100252.	1.8	34
59	Effect of the Structural Features of Hydrochloric Acid-Deamidated Wheat Gluten on Its Susceptibility to Enzymatic Hydrolysis. Journal of Agricultural and Food Chemistry, 2013, 61, 5706-5714.	2.4	33
60	Chitosanâ€capped silver nanoparticles: A comprehensive study of polymer molecular weight effect on the reaction kinetic, physicochemical properties, and synergetic antibacterial potential. SPE Polymers, 2022, 3, 77-90.	1.4	33
61	The algal polysaccharide ulvan suppresses growth of hepatoma cells. Food Frontiers, 2020, 1, 83-101.	3.7	32
62	Structural characteristics and anti-inflammatory activity of UV/H2O2-treated algal sulfated polysaccharide from Gracilaria lemaneiformis. Food and Chemical Toxicology, 2021, 152, 112157.	1.8	32
63	Comparative assessment of phytochemical profile, antioxidant capacity and anti-proliferative activity in different varieties of brown rice (Oryza sativa L.). LWT - Food Science and Technology, 2018, 96, 19-25.	2.5	31
64	Optimization of Hydrolysis Conditions for the Production of Antioxidant Peptides from Fish Gelatin Using Response Surface Methodology. Journal of Food Science, 2010, 75, C582-7.	1.5	30
65	Structural characterisation of acid- and alkali-soluble polysaccharides in the fruiting body of Dictyophora indusiata and their immunomodulatory activities. Food Chemistry, 2012, 132, 739-743.	4.2	29
66	Recent advances on bioactive polysaccharides from mulberry. Food and Function, 2021, 12, 5219-5235.	2.1	27
67	Antioxidant, antitumor and immunomodulatory activities of water-soluble polysaccharides in Abrus cantoniensis. International Journal of Biological Macromolecules, 2016, 89, 707-716.	3.6	26
68	<i>Averrhoa carambola</i> free phenolic extract ameliorates nonalcoholic hepatic steatosis by modulating mircoRNA-34a, mircoRNA-33 and AMPK pathways in leptin receptor-deficient db/db mice. Food and Function, 2017, 8, 4496-4507.	2.1	26
69	Structural characterization, antiproliferative and immunoregulatory activities of a polysaccharide from Boletus Leccinum rugosiceps. International Journal of Biological Macromolecules, 2020, 157, 106-118.	3.6	26
70	Regulation effects of indigestible dietary polysaccharides on intestinal microflora: An overview. Journal of Food Biochemistry, 2021, 45, e13564.	1.2	26
71	Effect of Curcumin Addition on the Properties of Biodegradable Pectin/Chitosan Films. Molecules, 2021, 26, 2152.	1.7	26
72	Influence of UV/H2O2 treatment on polysaccharides from Sargassum fusiforme: Physicochemical properties and RAW 264.7Âcells responses. Food and Chemical Toxicology, 2021, 153, 112246.	1.8	25

#	Article	IF	Citations
73	Polysaccharides from <i>Sargassum fusiforme</i> after UV/H ₂ O ₂ degradation effectively ameliorate dextran sulfate sodium-induced colitis. Food and Function, 2021, 12, 11747-11759.	2.1	25
74	Ultrasound-Assisted Extraction of Phenolics from Longan (Dimocarpus longan Lour.) Fruit Seed with Artificial Neural Network and Their Antioxidant Activity. Food Analytical Methods, 2012, 5, 1244-1251.	1.3	23
75	Phytochemical profiles and cellular antioxidant activity of Malus doumeri (bois) chevalier on 2,2′-azobis (2-amidinopropane) dihydrochloride (ABAP)-induced oxidative stress. Journal of Functional Foods, 2016, 25, 242-256.	1.6	23
76	Antihyperglycemic and antihyperlipidemic activities of a polysaccharide from <i>Physalis pubescens </i> L. in streptozotocin (STZ)-induced diabetic mice. Food and Function, 2019, 10, 4868-4876.	2.1	21
77	Digestion & Digestion witro and in vivo. Food Research International, 2021, 145, 110406.	2.9	21
78	Structural characterization and anti-photoaging activity of a polysaccharide from Sargassum fusiforme. Food Research International, 2022, 157, 111267.	2.9	20
79	Phenolic profiles and chemical- or cell-based antioxidant activities of four star fruit (Averrhoa) Tj ETQq1 1 0.7843	314 rgBT /	Overlock 10
80	Hypolipidaemic and antioxidant capacities of polysaccharides obtained from ⟨i>Laminaria japonica⟨/i>by different extraction media in dietâ€induced mouse model. International Journal of Food Science and Technology, 2017, 52, 2274-2281.	1.3	19
81	Effects of UV/H2O2 degradation and step gradient ethanol precipitation on Sargassum fusiforme polysaccharides: Physicochemical characterization and protective effects against intestinal epithelial injury. Food Research International, 2022, 155, 111093.	2.9	19
82	Structural characteristic of a sulfated polysaccharide from Gracilaria Lemaneiformis and its lipid metabolism regulation effect. Food and Function, 2020, 11, 10876-10885.	2.1	18
83	Comparative assessment of phytochemical profiles and antioxidant and antiproliferative activities of kiwifruit (<i>Actinidia deliciosa</i>) cultivars. Journal of Food Biochemistry, 2019, 43, e13025.	1.2	17
84	Current trends in the anti-photoaging activities and mechanisms of dietary non-starch polysaccharides from natural resources. Critical Reviews in Food Science and Nutrition, 2022, 62, 9021-9035.	5.4	16
85	Depolymerized non-digestible sulfated algal polysaccharides produced by hydrothermal treatment with enhanced bacterial fermentation characteristics. Food Hydrocolloids, 2022, 130, 107687.	5.6	16
86	Enhanced Antioxidant and Antiproliferative Activities of <i>Cymbopogon citratus</i> (DC.) Stapf Essential Oils in Microemulsion. ACS Sustainable Chemistry and Engineering, 2019, 7, 15173-15181.	3.2	15
87	Harnessing foodâ€based bioactive compounds to reduce the effects of ultraviolet radiation: a review exploring the link between food and human health. International Journal of Food Science and Technology, 2017, 52, 595-607.	1.3	14
88	In Vitro Infant Faecal Fermentation of Low Viscosity Barley Î ² -Glucan and Its Acid Hydrolyzed Derivatives: Evaluation of Their Potential as Novel Prebiotics. Molecules, 2019, 24, 828.	1.7	14
89	Comparative assessment of polyphenolics' content, free radicals' scavenging and cellular antioxidant potential in apricot fruit. Journal of King Saud University - Science, 2021, 33, 101459.	1.6	14
90	Isolation and Identification of Antioxidative Peptides from Frog (Hylarana guentheri) Protein Hydrolysate by Consecutive Chromatography and Electrospray Ionization Mass Spectrometry. Applied Biochemistry and Biotechnology, 2014, 173, 1169-1182.	1.4	12

#	Article	IF	CITATIONS
91	Structural characterization and protective effects of polysaccharide from Gracilaria lemaneiformis on LPS-induced injury in IEC-6 cells. Food Chemistry: X, 2021, 12, 100157.	1.8	11
92	Effect of thermal treatment on the characteristic properties of loach peptide. International Journal of Food Science and Technology, 2012, 47, 2574-2581.	1.3	9
93	Antioxidant Properties of Maillard Reaction Products from Defatted Peanut Meal Hydrolysate-Glucose Syrup and its Application to Sachima. Food Science and Technology Research, 2014, 20, 327-335.	0.3	9
94	Purification and Characterization of an Antioxidant Protein from Pearl Oyster (<i>Pinctada fucata) Tj ETQq0 0 0 0</i>	rgBT /Over	lock 10 Tf 50
95	High removal performance of a magnetic FPA90-Cl anion resin for bromate and coexisting precursors: kinetics, thermodynamics, and equilibrium studies. Environmental Science and Pollution Research, 2018, 25, 18001-18014.	2.7	8
96	Preparation, structure identification and the anti-photoaging activity of peptide fraction OP-la from <i>Ostrea rivularis</i> . RSC Advances, 2019, 9, 44-51.	1.7	7
97	Influence of phenolic acids/aldehydes on color intensification of cyanidin-3-O-glucoside, the main anthocyanin in sugarcane (Saccharum officinarum L.). Food Chemistry, 2022, 373, 131396.	4.2	7
98	Algal sulfated polysaccharide-based hydrogels enhance gelling properties and in vitro wound healing compared to conventional hydrogels. Algal Research, 2022, 65, 102740.	2.4	5
99	Combination Effects of Polyphenols Present in Sugarcane on Proliferation in MCF-7 Human Breast Cancer Cells. Sugar Tech, 2022, 24, 832-840.	0.9	4
100	Insight into the formation of $3\hat{a}\in \mathbb{N}$ monochloropropane $\hat{a}\in \mathbb{N}$, $2\hat{a}\in \mathbb{N}$ diol in soy sauce in the presence of pancreatin or other exogenous lipases. Journal of Food Processing and Preservation, 2019, 43, e14174.	0.9	3
101	Framework as a Service, FaaS: Personalized Prebiotic Development for Infants with the Elements of Time and Parametric Modelling of In Vitro Fermentation. Microorganisms, 2020, 8, 623.	1.6	O