
Dylan J Ehrbar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1375886/publications.pdf Version: 2024-02-01

NVIAN I FHORAD

#	Article	IF	CITATIONS
1	Vaccine Strain and Wild-Type Clades of Varicella-Zoster Virus in Central Nervous System and Non-CNS Disease, New York State, 2004–2019. Journal of Clinical Microbiology, 2022, 60, e0238121.	3.9	2
2	Durable Immunity to Ricin Toxin Elicited by Intranasally Administered Monoclonal Antibody–Based Immune Complexes. ImmunoHorizons, 2022, 6, 324-333.	1.8	2
3	Serological analysis reveals an imbalanced IgG subclass composition associated with COVID-19 disease severity. Cell Reports Medicine, 2021, 2, 100329.	6.5	65
4	Durable Immunity to Ricin Toxin Elicited by a Thermostable, Lyophilized Subunit Vaccine. MSphere, 2021, 6, e0075021.	2.9	2
5	Sensitization of Airway Epithelial Cells to Toxin-Induced Death by TNF Superfamily Cytokines. Methods in Molecular Biology, 2021, 2248, 19-42.	0.9	3
6	An intranasally administered monoclonal antibody cocktail abrogates ricin toxin-induced pulmonary tissue damage and inflammation. Human Vaccines and Immunotherapeutics, 2020, 16, 793-807.	3.3	18
7	Endpoint and epitope-specific antibody responses as correlates of vaccine-mediated protection of mice against ricin toxin. Vaccine, 2020, 38, 6721-6729.	3.8	6
8	Passive immunization with an extended half-life monoclonal antibody protects Rhesus macaques against aerosolized ricin toxin. Npj Vaccines, 2020, 5, 13.	6.0	12
9	A Humanized Monoclonal Antibody Cocktail to Prevent Pulmonary Ricin Intoxication. Toxins, 2020, 12, 215.	3.4	13
10	Sensitivity of Kupffer cells and liver sinusoidal endothelial cells to ricin toxin and ricin toxin–Ab complexes. Journal of Leukocyte Biology, 2019, 106, 1161-1176.	3.3	15
11	Rescue of rhesus macaques from the lethality of aerosolized ricin toxin. JCI Insight, 2019, 4, .	5.0	22
12	TRAIL (CD253) Sensitizes Human Airway Epithelial Cells to Toxin-Induced Cell Death. MSphere, 2018, 3, .	2.9	9
13	Thermal stability and epitope integrity of a lyophilized ricin toxin subunit vaccine. Vaccine, 2018, 36, 5967-5976.	3.8	19
14	Fine-Specificity Epitope Analysis Identifies Contact Points on Ricin Toxin Recognized by Protective Monoclonal Antibodies. ImmunoHorizons, 2018, 2, 262-273.	1.8	15
15	Differential Effects of Temperature and Mosquito Genetics Determine Transmissibility of Arboviruses by Aedes aegypti in Argentina. American Journal of Tropical Medicine and Hygiene, 2018, 99, 417-424.	1.4	26
16	High levels of local inter- and intra-host genetic variation of West Nile virus and evidence of fine-scale evolutionary pressures. Infection, Genetics and Evolution, 2017, 51, 219-226.	2.3	16
17	A Supercluster of Neutralizing Epitopes at the Interface of Ricin's Enzymatic (RTA) and Binding (RTB) Subunits. Toxins, 2017, 9, 378.	3.4	8
18	Spatial location of neutralizing and non-neutralizing B cell epitopes on domain 1 of ricin toxin's binding subunit. PLoS ONE, 2017, 12, e0180999.	2.5	17

Dylan J Ehrbar

#	Article	IF	CITATIONS
19	Effects of Zika Virus Strain and <i>Aedes</i> Mosquito Species on Vector Competence. Emerging Infectious Diseases, 2017, 23, 1110-1117.	4.3	133
20	Vertical Transmission of Zika Virus by <i>Aedes aegypti</i> and <i>Ae. albopictus</i> Mosquitoes. Emerging Infectious Diseases, 2017, 23, 880-882.	4.3	75
21	Increased Replicative Fitness of a Dengue Virus 2 Clade in Native Mosquitoes: Potential Contribution to a Clade Replacement Event in Nicaragua. Journal of Virology, 2014, 88, 13125-13134.	3.4	39
22	The evolution of virulence of West Nile virus in a mosquito vector: implications for arbovirus adaptation and evolution. BMC Evolutionary Biology, 2013, 13, 71.	3.2	36
23	Cooperative interactions in the West Nile virus mutant swarm. BMC Evolutionary Biology, 2012, 12, 58.	3.2	55
24	Quantification of intrahost bottlenecks of West Nile virus in Culex pipiens mosquitoes using an artificial mutant swarm. Infection, Genetics and Evolution, 2012, 12, 557-564.	2.3	48
25	Temporal and spatial alterations in mutant swarm size of St. Louis encephalitis virus in mosquito hosts. Infection, Genetics and Evolution, 2011, 11, 460-468.	2.3	13
26	Experimental Passage of St. Louis Encephalitis Virus In Vivo in Mosquitoes and Chickens Reveals Evolutionarily Significant Virus Characteristics. PLoS ONE, 2009, 4, e7876.	2.5	47