Giovanni Celano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1375591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monitoring the Coefficient of Variation Using EWMA Charts. Journal of Quality Technology, 2011, 43, 249-265.	1.8	158
2	Monitoring the coefficient of variation using a variable sample size control chart in short production runs. International Journal of Advanced Manufacturing Technology, 2015, 81, 1-14.	1.5	105
3	Monitoring the Coefficient of Variation Using a Variable Sampling Interval Control Chart. Quality and Reliability Engineering International, 2013, 29, 1135-1149.	1.4	85
4	Monitoring the Coefficient of Variation Using Control Charts with Run Rules. Quality Technology and Quantitative Management, 2013, 10, 75-94.	1.1	81
5	Monitoring the coefficient of variation using a variable sample size control chart. International Journal of Advanced Manufacturing Technology, 2015, 80, 1561-1576.	1.5	72
6	Shewhart and EWMA <i>t</i> control charts for short production runs. Quality and Reliability Engineering International, 2011, 27, 313-326.	1.4	71
7	Performance of t control charts in short runs with unknown shift sizes. Computers and Industrial Engineering, 2013, 64, 56-68.	3.4	62
8	THE EXACT RUN LENGTH DISTRIBUTION AND DESIGN OF THE S ² CHART WHEN THE IN-CONTROL VARIANCE IS ESTIMATED. International Journal of Reliability, Quality and Safety Engineering, 2009, 16, 23-38.	0.4	60
9	A new efficient encoding/decoding procedure for the design of a supply chain network with genetic algorithms. Computers and Industrial Engineering, 2010, 59, 986-999.	3.4	60
10	One-Sided Shewhart-type Charts for Monitoring the Coefficient of Variation in Short Production Runs. Quality Technology and Quantitative Management, 2015, 12, 53-67.	1.1	53
11	Optimization of multi-pass turning economies through a hybrid particle swarm optimization technique. International Journal of Advanced Manufacturing Technology, 2011, 53, 421-433.	1.5	48
12	The performance of the Shewhart-RZ control chart in the presence of measurement error. International Journal of Production Research, 2016, 54, 7504-7522.	4.9	47
13	A variable sampling interval Shewhart control chart for monitoring the coefficient of variation in short production runs. International Journal of Production Research, 2017, 55, 5521-5536.	4.9	43
14	Economic design of Shewhart control charts for monitoring autocorrelated data with skip sampling strategies. International Journal of Production Economics, 2014, 151, 121-130.	5.1	41
15	Monitoring the ratio of two normal variables using Run Rules type control charts. International Journal of Production Research, 2016, 54, 1670-1688.	4.9	41
16	Robust design of adaptive control charts for manual manufacturing/inspection workstations. Journal of Applied Statistics, 2009, 36, 181-203.	0.6	38
17	A new CUSUMâ€ <i>S</i> ² control chart for monitoring the process variance. Journal of Quality in Maintenance Engineering, 2009, 15, 344-357.	1.0	38
18	An EWMA-type sign chart with exact run length properties. Journal of Quality Technology, 2019, 51, 51-63.	1.8	38

#	Article	IF	CITATIONS
19	Multiobjective economic design of an X control chart. Computers and Industrial Engineering, 1999, 37, 129-132.	3.4	36
20	A general model for the economic-statistical design of adaptive control charts for processes subject to multiple assignable causes. International Journal of Production Research, 2015, 53, 2146-2164.	4.9	36
21	Statistical design of variable sample size and sampling interval \$\$ar X\$\$ control charts with run rulescontrol charts with run rules. International Journal of Advanced Manufacturing Technology, 2006, 28, 966-977.	1.5	35
22	Monitoring the ratio of population means of a bivariate normal distribution using CUSUM type control charts. Statistical Papers, 2018, 59, 387-413.	0.7	35
23	Monitoring the Ratio of Two Normal Variables Using EWMA Type Control Charts. Quality and Reliability Engineering International, 2016, 32, 1853-1869.	1.4	34
24	Human factor policy testing in the sequencing of manual mixed model assembly lines. Computers and Operations Research, 2004, 31, 39-59.	2.4	33
25	AN EVOLUTIONARY ALGORITHM FOR PURE FUZZY FLOWSHOP SCHEDULING PROBLEMS. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2003, 11, 655-669.	0.9	31
26	A Synthetic Control Chart for Monitoring the Ratio of Two Normal Variables. Quality and Reliability Engineering International, 2016, 32, 681-696.	1.4	31
27	Linking Six Sigma to simulation: a new roadmap to improve the quality of patient care. International Journal of Health Care Quality Assurance, 2012, 25, 254-273.	0.2	30
28	The Economic Performance of a CUSUM <i>t</i> Control Chart for Monitoring Short Production Runs. Quality Technology and Quantitative Management, 2012, 9, 329-354.	1.1	29
29	The economic performance of the Shewhart <i>t</i> chart. Quality and Reliability Engineering International, 2012, 28, 159-180.	1.4	28
30	A new sampling strategy to reduce the effect of autocorrelation on a control chart. Journal of Applied Statistics, 2014, 41, 1408-1421.	0.6	28
31	An evolutionary approach to multi-objective scheduling of mixed model assembly lines. Computers and Industrial Engineering, 1999, 37, 69-73.	3.4	26
32	Economic design of inspection strategies to monitor dispersion in short production runs. Computers and Industrial Engineering, 2010, 59, 887-897.	3.4	26
33	Design of a Phase II Control Chart for Monitoring the Ratio of two Normal Variables. Quality and Reliability Engineering International, 2016, 32, 291-308.	1.4	26
34	On the constrained economic design of control charts: a literature review. Production, 2011, 21, 223-234.	1.3	25
35	Statistical Performance of a Control Chart for Individual Observations Monitoring the Ratio of Two Normal Variables. Quality and Reliability Engineering International, 2014, 30, 1361-1377.	1.4	25
36	The variable sampling interval control chart for finite-horizon processes. IIE Transactions, 2014, 46, 1050-1065.	2.1	25

#	Article	IF	CITATIONS
37	Joint Shewhart control charts for location and scale monitoring in finite horizon processes. Computers and Industrial Engineering, 2016, 101, 427-439.	3.4	24
38	Monitoring compositional data using multivariate exponentially weighted moving average scheme. Quality and Reliability Engineering International, 2018, 34, 391-402.	1.4	24
39	A variable sampling interval S ² -EWMA control chart for monitoring the process variance. International Journal of Technology Management, 2007, 37, 125.	0.2	22
40	Scheduling of unrelated parallel manufacturing cells with limited human resources. International Journal of Production Research, 2008, 46, 405-427.	4.9	20
41	A stochastic shift model for economically designed charts constrained by the process stage configuration. International Journal of Production Economics, 2011, 132, 315-325.	5.1	20
42	On the effect of the measurement error on Shewhart t and EWMA t control charts. International Journal of Advanced Manufacturing Technology, 2020, 107, 4317-4332.	1.5	20
43	Constrained scheduling of the inspection activities on semiconductor wafers grouped in families with sequence-dependent set-up times. International Journal of Advanced Manufacturing Technology, 2010, 46, 695-705.	1.5	19
44	Comparison of the <i>XÅ</i> Chart and the <i>t</i> Chart When the Parameters are Estimated. Quality Technology and Quantitative Management, 2013, 10, 1-16.	1.1	19
45	On the implementation of the Shewhart sign control chart for low-volume production. International Journal of Production Research, 2016, 54, 5886-5900.	4.9	19
46	A distribution-free EWMA control chart for monitoring time-between-events-and-amplitude data. Journal of Applied Statistics, 2021, 48, 434-454.	0.6	19
47	Evaluation of the Statistical Performance of a Variable Sampling Interval <i>R</i> EWMA Control Chart. Quality Technology and Quantitative Management, 2006, 3, 307-323.	1.1	18
48	Effect of autocorrelation estimators on the performance of the XÌ,, control chart. Journal of Statistical Computation and Simulation, 2018, 88, 2612-2630.	0.7	18
49	A distribution-free Shewhart-type Mann–Whitney control chart for monitoring finite horizon productions. International Journal of Production Research, 2021, 59, 6069-6086.	4.9	18
50	Monitoring Process Variability Using EWMA. , 2006, , 291-325.		18
51	One-sided synthetic control charts for monitoring the multivariate coefficient of variation. Journal of Statistical Computation and Simulation, 2019, 89, 1841-1862.	0.7	16
52	Methods for the Characterization of Polyetherimide Based Materials Processed by Fused Deposition Modelling. Applied Sciences (Switzerland), 2020, 10, 3195.	1.3	16
53	The application of AI techniques in the optimal design of multi-pass cold drawing processes. Journal of Materials Processing Technology, 2001, 113, 680-685.	3.1	15
54	A VARIABLE SAMPLE SIZE S ² -EWMA CONTROL CHART FOR MONITORING THE PROCESS VARIANCE. International Journal of Reliability, Quality and Safety Engineering, 2008, 15, 181-201.	0.4	15

4

#	Article	IF	CITATIONS
55	An EWMA sign control chart with varying control limits for finite horizon processes. Quality and Reliability Engineering International, 2018, 34, 1717-1731.	1.4	15
56	The variable sample size t control chart for monitoring short production runs. International Journal of Advanced Manufacturing Technology, 2013, 66, 1353.	1.5	14
57	One-sided run rules control charts for monitoring the coefficient of variation in short production runs. European Journal of Industrial Engineering, 2016, 10, 639.	0.5	14
58	On the economic-statistical design of control charts constrained by the inspection workstation configuration. International Journal of Quality Engineering and Technology, 2010, 1, 231.	0.0	13
59	Constrained economic design of <i>S</i> control charts for random process shifts. International Journal of Quality and Reliability Management, 2011, 28, 298-316.	1.3	12
60	ONE-SIDED BAYESIAN S ² CONTROL CHARTS FOR THE CONTROL OF PROCESS DISPERSION IN FINITE PRODUCTION RUNS. International Journal of Reliability, Quality and Safety Engineering, 2008, 15, 305-327.	0.4	11
61	Economic and statistical design of Vp control charts for finite-horizon processes. IISE Transactions, 2017, 49, 110-125.	1.6	11
62	A comparative analysis of sequencing heuristics for solving the Toyota Goal Chasing problem. Robotics and Computer-Integrated Manufacturing, 2004, 20, 573-581.	6.1	10
63	A Johnson's type transformation EWMA-S² control chart. International Journal of Quality Engineering and Technology, 2010, 1, 253.	0.0	10
64	The variable parameters T \$\$^{2}\$\$ 2 chart with run rules. Statistical Papers, 2014, 55, 933-950.	0.7	8
65	Projection micro-stereolithography versus master–slave approach to manufacture a micro-optofluidic device for slug flow detection. International Journal of Advanced Manufacturing Technology, 2022, 120, 4443-4460.	1.5	8
66	Economicâ€ s tatistical design of an <i>S</i> EWMA control chart for monitoring process variability. Journal of Quality in Maintenance Engineering, 2007, 13, 304-320.	1.0	7
67	Control Charts monitoring Product's Loss to Society. Quality and Reliability Engineering International, 2014, 30, 1393-1407.	1.4	7
68	An EWMA-type chart based on signed ranks with exact run length properties. Journal of Statistical Computation and Simulation, 2021, 91, 732-751.	0.7	7
69	The Shewhart Sign Chart with Ties: Performance and Alternatives. , 2020, , 107-136.		7
70	Modelling a radiology department service using a VDL integrated approach. Journal of Health Organization and Management, 2009, 23, 376-395.	0.6	5
71	An efficient geneticâ€dynamic programming procedure to design Bayesian control charts. International Journal of Quality and Reliability Management, 2009, 26, 831-848.	1.3	5

Fuzzy scheduling of a flexible assembly line through an evolutionary algorithm. , 0, , .

#	Article	IF	CITATIONS
73	The performance of the Shewhart sign control chart for finite horizon processes. International Journal of Advanced Manufacturing Technology, 2016, 84, 1497.	1.5	4
74	The Shewhart <i>F</i> control chart for monitoring processes with finite number of inspections. Quality and Reliability Engineering International, 2018, 34, 1685-1698.	1.4	4
75	Fuzzy scheduling of a flexible assembly line through evolutionary algorithms. , 0, , .		3
76	Monitoring the multivariate coefficient of variation in presence of autocorrelation with variable parameters control charts. Quality Technology and Quantitative Management, 2023, 20, 184-210.	1.1	3
77	AN OBJECT ORIENTED MODEL FOR SCHEDULING IN AGILE MANUFACTURING. Journal of Advanced Manufacturing Systems, 2002, 01, 173-188.	0.4	2
78	A new sampling strategy for the Shewhart control chart monitoring a process with wandering mean. International Journal of Production Research, 2015, 53, 4231-4248.	4.9	2
79	Onâ€line monitoring of extreme values of geometric profiles in finite horizon processes. Quality and Reliability Engineering International, 2020, 36, 1313-1332.	1.4	2
80	Pallet Configuration for Approaching Mapping Requirements on Devices. , 2009, , 113-135.		2
81	Monitoring the covariance matrix of bivariate processes with the DVMAX control charts. Applied Stochastic Models in Business and Industry, 0, , .	0.9	2
82	A numberâ€betweenâ€events control chart for monitoring finite horizon production processes. Quality and Reliability Engineering International, 2022, 38, 2110-2138.	1.4	2
83	ACTIVITY SIMULATION WITHIN A RADIOLOGY DEPARTMENT WITH LIMITED NURSE RESOURCES. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 695-700.	0.4	1
84	Economic-statistical Design of a Logarithmic Transformed S2 EWMA Chart. Springer Series in Reliability Engineering, 2008, , 375-405.	0.3	1
85	Fused Deposition Modelling (FDM): New Standards for Mechanical Characterization. Macromolecular Symposia, 2021, 395, 2000253.	0.4	1
86	Control Charts for Monitoring Time-Between-Events-and-Amplitude Data. Springer Series in Reliability Engineering, 2022, , 43-76.	0.3	1
87	A bootstrap method for the measurement error estimation in Gauge R&R\$R{&}R\$ Studies. Quality and Reliability Engineering International, 0, , .	1.4	1
88	Constrained scheduling of jobs with different due dates in a flowshop. , 0, , .		0