Tea Pavkov-Keller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1375554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Residue-Specific Incorporation of the Non-Canonical Amino Acid Norleucine Improves Lipase Activity on Synthetic Polyesters. Frontiers in Bioengineering and Biotechnology, 2022, 10, 769830.	4.1	3
2	Small Things Matter: The 11.6-kDa TraB Protein is Crucial for Antibiotic Resistance Transfer Among Enterococci. Frontiers in Molecular Biosciences, 2022, 9, 867136.	3.5	2
3	The periplasmic domains of Vibriocholerae ToxR and ToxS are forming a strong heterodimeric complex independent on the redox state of ToxR cysteines. Molecular Microbiology, 2021, 115, 1277-1291.	2.5	7
4	Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373, 871-876.	12.6	2,843
5	Structural Changes in the Cap of Rv0183/mtbMGL Modulate the Shape of the Binding Pocket. Biomolecules, 2021, 11, 1299.	4.0	2
6	Structural and DNA-binding properties of the cytoplasmic domain of Vibrio cholerae transcription factor ToxR. Journal of Biological Chemistry, 2021, 297, 101167.	3.4	5
7	Rational Engineered C-Acyltransferase Transforms Sterically Demanding Acyl Donors. ACS Catalysis, 2020, 10, 1094-1101.	11.2	10
8	Substituting the catalytic proline of 4-oxalocrotonate tautomerase with non-canonical analogues reveals a finely tuned catalytic system. Scientific Reports, 2019, 9, 2697.	3.3	6
9	Structure and Catalytic Mechanism of a Bacterial Friedel–Crafts Acylase. ChemBioChem, 2019, 20, 88-95.	2.6	27
10	Oxidative cyclization of N-methyl-dopa by a fungal flavoenzyme of the amine oxidase family. Journal of Biological Chemistry, 2018, 293, 17021-17032.	3.4	4
11	TraN: A novel repressor of an Enterococcus conjugative type IV secretion system. Nucleic Acids Research, 2018, 46, 9201-9219.	14.5	11
12	Identification of Key Residues for Enzymatic Carboxylate Reduction. Frontiers in Microbiology, 2018, 9, 250.	3.5	29
13	The crystal structure of monoacylglycerol lipase from M. tuberculosis reveals the basis for specific inhibition. Scientific Reports, 2018, 8, 8948.	3.3	23
14	Enzyme discovery beyond homology: a unique hydroxynitrile lyase in the Bet v1 superfamily. Scientific Reports, 2017, 7, 46738.	3.3	21
15	Biocatalytic Friedel–Crafts Acylation and Fries Reaction. Angewandte Chemie - International Edition, 2017, 56, 7615-7619.	13.8	54
16	Biocatalytic Friedel–Crafts Acylation and Fries Reaction. Angewandte Chemie, 2017, 129, 7723-7727.	2.0	11
17	Regioselective <i>para</i> â€Carboxylation of Catechols with a Prenylated Flavin Dependent Decarboxylase. Angewandte Chemie - International Edition, 2017, 56, 13893-13897.	13.8	64
18	Regioselektive <i>para</i> â€Carboxylierung von Catecholen mit einer Prenylflavinâ€abhägigen Decarboxylase. Angewandte Chemie, 2017, 129, 14081-14085.	2.0	6

Tea Pavkov-Keller

#	Article	IF	CITATIONS
19	Crystal Structure and Catalytic Mechanism of CouO, a Versatile C-Methyltransferase from Streptomyces rishiriensis. PLoS ONE, 2017, 12, e0171056.	2.5	16
20	Discovery and structural characterisation of new fold type IV-transaminases exemplify the diversity of this enzyme fold. Scientific Reports, 2016, 6, 38183.	3.3	36
21	Structures of almond hydroxynitrile lyase isoenzyme 5 provide a rationale for the lack of oxidoreductase activity in flavin dependent HNLs. Journal of Biotechnology, 2016, 235, 24-31.	3.8	3
22	Structure and biochemical properties of recombinant human dimethylglycine dehydrogenase and comparison to the diseaseâ€related H109R variant. FEBS Journal, 2016, 283, 3587-3603.	4.7	14
23	Substrate complexes of human dipeptidyl peptidase III reveal the mechanism of enzyme inhibition. Scientific Reports, 2016, 6, 23787.	3.3	41
24	Characterization of a poly(butylene adipate-co-terephthalate)-hydrolyzing lipase from Pelosinus fermentans. Applied Microbiology and Biotechnology, 2016, 100, 1753-1764.	3.6	75
25	An Esterase from Anaerobic <i>Clostridium hathewayi</i> Can Hydrolyze Aliphatic–Aromatic Polyesters. Environmental Science & Technology, 2016, 50, 2899-2907.	10.0	39
26	Regioselective Enzymatic βâ€Carboxylation of <i>para</i> â€Hydroxy―styrene Derivatives Catalyzed by Phenolic Acid Decarboxylases. Advanced Synthesis and Catalysis, 2015, 357, 1909-1918.	4.3	47
27	Structureâ€Based Mechanism of Oleate Hydratase from <i>Elizabethkingia meningoseptica</i> . ChemBioChem, 2015, 16, 1730-1734.	2.6	66
28	The Nitrileâ€Forming Enzyme 7â€Cyanoâ€7â€Deazaguanine Synthase from <i>Geobacillus kaustophilus</i> : A Reverse Nitrilase?. ChemBioChem, 2015, 16, 2373-2378.	2.6	7
29	Complete switch from α-2,3- to α-2,6-regioselectivity in Pasteurella dagmatis β- <scp>d</scp> -galactoside sialyltransferase by active-site redesign. Chemical Communications, 2015, 51, 3083-3086.	4.1	41
30	Improving the Properties of Bacterial <i>R</i> ‣elective Hydroxynitrile Lyases for Industrial Applications. ChemCatChem, 2015, 7, 325-332.	3.7	27
31	Anthranoyl-CoA monooxygenase/reductase from Azoarcus evansii possesses both FMN and FAD in two distinct and independent active sites. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 890-896.	2.3	4
32	Oxidation of Monolignols by Members of the Berberine Bridge Enzyme Family Suggests a Role in Plant Cell Wall Metabolism. Journal of Biological Chemistry, 2015, 290, 18770-18781.	3.4	83
33	Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations. Nature Communications, 2014, 5, 4150.	12.8	67
34	Dissection of the IgE and T-cell recognition of the major group 5 grass pollen allergen Phl p 5. Journal of Allergy and Clinical Immunology, 2014, 133, 836-845.e11.	2.9	36
35	Structure of allergens and structure based epitope predictions. Methods, 2014, 66, 3-21.	3.8	82
36	S-adenosyl-L-homocysteine hydrolase and methylation disorders: Yeast as a model system. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 204-215.	3.8	122

#	Article	IF	CITATIONS
37	Crystallization and preliminary structure determination of the transfer protein TraM from the Gram-positive conjugative plasmid pIP501. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 178-183.	0.7	6
38	The 2.5 Ã Structure of the Enterococcus Conjugation Protein TraM resembles VirB8 Type IV Secretion Proteins. Journal of Biological Chemistry, 2013, 288, 2018-2028.	3.4	50
39	Crystallization of domains involved in self-assembly of the S-layer protein SbsC. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1511-1514.	0.7	7
40	The Structure of Bacterial S-Layer Proteins. Progress in Molecular Biology and Translational Science, 2011, 103, 73-130.	1.7	58
41	Recombinant monoclonal human immunoglobulin E to investigate the allergenic activity of major grass pollen allergen Phl p 5. Clinical and Experimental Allergy, 2011, 41, 270-280.	2.9	17
42	Structure of Human Na+/H+ Exchanger NHE1 Regulatory Region in Complex with Calmodulin and Ca2+. Journal of Biological Chemistry, 2011, 286, 40954-40961.	3.4	47
43	Visualization of clustered IgE epitopes on α-lactalbumin. Journal of Allergy and Clinical Immunology, 2010, 125, 1279-1285.e9.	2.9	48
44	Identification of the reactive cysteine residues in yeast dipeptidyl peptidase III. Biochimie, 2010, 92, 89-96.	2.6	15
45	Towards the structure of the C-terminal part of the S-layer protein SbsC. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 1042-1047.	0.7	5
46	The highâ€molecularâ€mass amylase (HMMA) of <i>Geobacillus stearothermophilus</i> ATCC 12980 interacts with the cell wall components by virtue of three specific binding regions. Molecular Microbiology, 2009, 72, 1448-1461.	2.5	15
47	The Structure and Binding Behavior of the Bacterial Cell Surface Layer Protein SbsC. Structure, 2008, 16, 1226-1237.	3.3	79
48	Mimotopes identify conformational B-cell epitopes on the two major house dust mite allergens Der p 1 and Der p 2. Molecular Immunology, 2008, 45, 1308-1317.	2.2	30
49	Reduction of the in vivo allergenicity of Der p 2, the major house-dust mite allergen, by genetic engineering. Molecular Immunology, 2008, 45, 2486-2498.	2.2	53
50	S-Adenosylhomocysteine hydrolase (AdoHcyase) deficiency: Enzymatic capabilities of human AdoHcyase are highly effected by changes to codon 89 and its surrounding residues. Biochemical and Biophysical Research Communications, 2008, 368, 30-36.	2.1	9
51	Functional analysis of human S-adenosylhomocysteine hydrolase isoforms SAHH-2 and SAHH-3. European Journal of Human Genetics, 2007, 15, 347-351.	2.8	9
52	A single mutation at Tyr143 of human S-adenosylhomocysteine hydrolase renders the enzyme thermosensitive and affects the oxidation state of bound cofactor nicotinamide–adenine dinucleotide. Biochemical Journal, 2006, 400, 245-253.	3.7	18
53	Crystallization and preliminary structure determination of the plant food allergen Pru av 2. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 186-188.	0.7	15
54	Crystallization and preliminary structure determination of the C-terminal truncated domain of the S-layer protein SbsC. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1466-1468.	2.5	22