Matthew D Rand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1375271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drosophotoxicology: The growing potential for Drosophila in neurotoxicology. Neurotoxicology and Teratology, 2010, 32, 74-83.	2.4	176
2	Developmental Toxicity Assays Using the <i>Drosophila</i> Model. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2014, 59, 1.12.1-20.	1.1	57
3	Methylmercury disruption of embryonic neural development in Drosophila. NeuroToxicology, 2009, 30, 794-802.	3.0	55
4	Permeabilization of Drosophila embryos for introduction of small molecules. Insect Biochemistry and Molecular Biology, 2010, 40, 792-804.	2.7	54
5	Methylmercury induces activation of Notch signaling. NeuroToxicology, 2006, 27, 982-991.	3.0	52
6	Genome-Wide Association Analysis of Tolerance to Methylmercury Toxicity in Drosophila Implicates Myogenic and Neuromuscular Developmental Pathways. PLoS ONE, 2014, 9, e110375.	2.5	42
7	Identification of Methylmercury Tolerance Gene Candidates in Drosophila. Toxicological Sciences, 2010, 116, 225-238.	3.1	34
8	Maternal polymorphisms in glutathione-related genes are associated with maternal mercury concentrations and early child neurodevelopment in a population with a fish-rich diet. Environment International, 2018, 115, 142-149.	10.0	34
9	Polymorphisms in ATP-binding cassette transporters associated with maternal methylmercury disposition and infant neurodevelopment in mother-infant pairs in the Seychelles Child Development Study. Environment International, 2016, 94, 224-229.	10.0	32
10	Editor's Highlight: Glutathione S-Transferase Activity Moderates Methylmercury Toxicity During Development in Drosophila. Toxicological Sciences, 2017, 157, 211-221.	3.1	32
11	Editor's Highlight: Variation in Methylmercury Metabolism and Elimination Status in Humans Following Fish Consumption. Toxicological Sciences, 2018, 161, 443-453.	3.1	30
12	Methylmercury Activates Enhancer-of-Split and Bearded Complex Genes Independent of the Notch Receptor. Toxicological Sciences, 2008, 104, 163-176.	3.1	29
13	Variation in the biological half-life of methylmercury in humans: Methods, measurements and meaning. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 129301.	2.4	26
14	CYP3A genes and the association between prenatal methylmercury exposure and neurodevelopment. Environment International, 2017, 105, 34-42.	10.0	24
15	Drosophotoxicology: Elucidating Kinetic and Dynamic Pathways of Methylmercury Toxicity in a Drosophila Model. Frontiers in Genetics, 2019, 10, 666.	2.3	24
16	The Notch target E(spl)ml̂´ is a muscle-specific gene involved in methylmercury toxicity in motor neuron development. Neurotoxicology and Teratology, 2014, 43, 11-18.	2.4	20
17	Notch Target Gene E(spl)mδIs a Mediator of Methylmercury-Induced Myotoxicity in Drosophila. Frontiers in Genetics, 2017, 8, 233.	2.3	20
18	Associations of prenatal methylmercury exposure and maternal polyunsaturated fatty acid status with neurodevelopmental outcomes at 7 years of age: results from the Seychelles Child Development Study Nutrition Cohort 2. American Journal of Clinical Nutrition, 2021, 113, 304-313.	4.7	20

MATTHEW D RAND

#	Article	IF	CITATIONS
19	Drosophila CYP6g1 and its human homolog CYP3A4 confer tolerance to methylmercury during development. Toxicology, 2012, 300, 75-82.	4.2	18
20	Associations of blood mercury and fatty acid concentrations with blood mitochondrial DNA copy number in the Seychelles Child Development Nutrition Study. Environment International, 2019, 124, 278-283.	10.0	15
21	Methylmercury exposure causes a persistent inhibition of myogenin expression and C2C12 myoblast differentiation. Toxicology, 2018, 393, 113-122.	4.2	12
22	Tissue-specific Nrf2 signaling protects against methylmercury toxicity in Drosophila neuromuscular development. Archives of Toxicology, 2020, 94, 4007-4022.	4.2	12
23	Organomercurial Lyase (MerB)-Mediated Demethylation Decreases Bacterial Methylmercury Resistance in the Absence of Mercuric Reductase (MerA). Applied and Environmental Microbiology, 2022, 88, aem0001022.	3.1	11
24	A Method of Permeabilization of Drosophila Embryos for Assays of Small Molecule Activity. Journal of Visualized Experiments, 2014, , .	0.3	10
25	Developmental exposure to methylmercury and resultant muscle mercury accumulation and adult motor deficits in mice. NeuroToxicology, 2020, 81, 1-10.	3.0	10
26	Developmental Toxicology of Metal Mixtures in Drosophila: Unique Properties of Potency and Interactions of Mercury Isoforms. International Journal of Molecular Sciences, 2021, 22, 12131.	4.1	10
27	Latent effects of early-life methylmercury exposure on motor function in Drosophila. Neurotoxicology and Teratology, 2021, 88, 107037.	2.4	6
28	Development of Human Hair Reference Material Supporting the Biomonitoring of Methylmercury. Analytical Sciences, 2020, 36, 561-565.	1.6	5
29	Variation in Methylmercury Metabolism and Elimination in Humans: Physiological Pharmacokinetic Modeling Highlights the Role of Gut Biotransformation, Skeletal Muscle, and Hair. Toxicological Sciences, 2021, 180, 26-37.	3.1	5
30	Methylmercury modifies temporally expressed myogenic regulatory factors to inhibit myoblast differentiation. Toxicology in Vitro, 2020, 63, 104717.	2.4	4
31	Methylmercury myotoxicity targets formation of the myotendinous junction. Toxicology, 2020, 443, 152561.	4.2	4
32	Delivery Mode and Child Development at 20ÂMonths of Age and 7ÂYears of Age in the Republic of Seychelles. Maternal and Child Health Journal, 2021, 25, 1930-1938.	1.5	4
33	Neuroligin-1 Is a Mediator of Methylmercury Neuromuscular Toxicity. Toxicological Sciences, 2021, 184, 236-251.	3.1	2