Bastian Vögeli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1375110/publications.pdf Version: 2024-02-01

RASTIAN VÃOCELL

#	Article	IF	CITATIONS
1	Cell-Free Protein Synthesis for High-Throughput Biosynthetic Pathway Prototyping. Methods in Molecular Biology, 2022, 2433, 199-215.	0.9	9
2	Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice. Science Translational Medicine, 2022, 14, eabn1252.	12.4	68
3	Intersubunit Coupling Enables Fast CO ₂ -Fixation by Reductive Carboxylases. ACS Central Science, 2022, 8, 1091-1101.	11.3	10
4	Cell-free prototyping enables implementation of optimized reverse \hat{l}^2 -oxidation pathways in heterotrophic and autotrophic bacteria. Nature Communications, 2022, 13, .	12.8	27
5	Cellâ€Free Exploration of the Natural Product Chemical Space. ChemBioChem, 2021, 22, 84-91.	2.6	32
6	Benzylmalonyl-CoA dehydrogenase, an enzyme involved in bacterial auxin degradation. Archives of Microbiology, 2021, 203, 4149-4159.	2.2	1
7	Toward sustainable, cell-free biomanufacturing. Current Opinion in Biotechnology, 2021, 69, 136-144.	6.6	46
8	Awakening a latent carbon fixation cycle in Escherichia coli. Nature Communications, 2020, 11, 5812.	12.8	64
9	Tuning the Cell-Free Protein Synthesis System for Biomanufacturing of Monomeric Human Filaggrin. Frontiers in Bioengineering and Biotechnology, 2020, 8, 590341.	4.1	7
10	A common approach for absolute quantification of short chain CoA thioesters in prokaryotic and eukaryotic microbes. Microbial Cell Factories, 2020, 19, 160.	4.0	21
11	Modular cell-free expression plasmids to accelerate biological design in cells. Synthetic Biology, 2020, 5, ysaa019.	2.2	10
12	A critical comparison of cellular and cell-free bioproduction systems. Current Opinion in Biotechnology, 2019, 60, 221-229.	6.6	67
13	Four amino acids define the CO ₂ binding pocket of enoyl-CoA carboxylases/reductases. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13964-13969.	7.1	38
14	Crystal structure of archaeal <scp>HMG</scp> â€CoA reductase: insights into structural changes of the Câ€terminal helix of the classâ€l enzyme. FEBS Letters, 2019, 593, 543-553.	2.8	10
15	Engineered Production of Short-Chain Acyl-Coenzyme A Esters in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2018, 7, 1105-1115.	3.8	14
16	Combining Promiscuous Acyl-CoA Oxidase and Enoyl-CoA Carboxylase/Reductases for Atypical Polyketide Extender Unit Biosynthesis. Cell Chemical Biology, 2018, 25, 833-839.e4.	5.2	23
17	Archaeal acetoacetyl-CoA thiolase/HMG-CoA synthase complex channels the intermediate via a fused CoA-binding site. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3380-3385.	7.1	44
18	â€~Negative' and â€~positive catalysis': complementary principles that shape the catalytic landscape of enzymes. Current Opinion in Chemical Biology, 2018, 47, 94-100.	6.1	36

Bastian Vögeli

#	Article	IF	CITATIONS
19	InhA, the enoyl-thioester reductase from Mycobacterium tuberculosis forms a covalent adduct during catalysis. Journal of Biological Chemistry, 2018, 293, 17200-17207.	3.4	15
20	The multicatalytic compartment of propionyl-CoA synthase sequesters a toxic metabolite. Nature Chemical Biology, 2018, 14, 1127-1132.	8.0	34
21	A conserved threonine prevents self-intoxication of enoyl-thioester reductases. Nature Chemical Biology, 2017, 13, 745-749.	8.0	18
22	A Chemo-Enzymatic Road Map to the Synthesis of CoA Esters. Molecules, 2016, 21, 517.	3.8	54
23	The use of ene adducts to study and engineer enoyl-thioester reductases. Nature Chemical Biology, 2015, 11, 398-400.	8.0	27