
Noa Lachman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1375077/publications.pdf Version: 2024-02-01

NOALACHMAN

#	Article	IF	CITATIONS
1	Influence of service fluids on carbon–carbon aircraftsâ€ [~] brake disks oxidation. Engineering Failure Analysis, 2021, 125, 105403.	4.0	3
2	Mechanical and Compositional Implications of Gallium Ion Milling on Epoxy Resin. Polymers, 2021, 13, 2640.	4.5	6
3	Development of Quality Control Methods for Dispersibility and Stability of Single-Wall Carbon Nanotubes in an Aqueous Medium. Nanomaterials, 2021, 11, 2618.	4.1	3
4	Alumina Thin-Film Deposition on Rough Topographies Comprising Vertically Aligned Carbon Nanotubes: Implications for Membranes, Sensors, and Electrodes. ACS Applied Nano Materials, 2021, 4, 322-330.	5.0	2
5	Strong, tough and bio-degradable polymer-based 3D-ink for fused filament fabrication (FFF) using WS2 nanotubes. Scientific Reports, 2020, 10, 8892.	3.3	16
6	Preserving Softness and Elastic Recovery in Silicone-Based Stretchable Electrodes Using Carbon Nanotubes. Polymers, 2020, 12, 1345.	4.5	7
7	Modeling the Electromagnetic Scattering Characteristics of Carbon Nanotube Composites Characterized by 3-D Tomographic Transmission Electron Microscopy. IEEE Open Journal of Antennas and Propagation, 2020, 1, 142-158.	3.7	5
8	Aligned carbon nanotube morphogenesis predicts physical properties of their polymer nanocomposites. Nanoscale, 2019, 11, 16327-16335.	5.6	16
9	Nanocomposite of Poly(l-Lactic Acid) with Inorganic Nanotubes of WS2. Lubricants, 2019, 7, 28.	2.9	13
10	Synthesis of polymer bead nano-necklaces on aligned carbon nanotube scaffolds. Nanotechnology, 2017, 28, 24LT01.	2.6	10
11	Room Temperature Resistive Volatile Organic Compound Sensing Materials Based on a Hybrid Structure of Vertically Aligned Carbon Nanotubes and Conformal oCVD/iCVD Polymer Coatings. ACS Sensors, 2016, 1, 374-383.	7.8	47
12	Electromagnetic scattering from multiple Carbon Nanotubes with experimentally determined shapes and distributions. , 2015, , .		1
13	The Evolution of Carbon Nanotube Network Structure in Unidirectional Nanocomposites Resolved by Quantitative Electron Tomography. ACS Nano, 2015, 9, 6050-6058.	14.6	62
14	Hierarchical carbon nanotube carbon fiber unidirectional composites with preserved tensile and interfacial properties. Composites Science and Technology, 2015, 117, 139-145.	7.8	83
15	Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks. Applied Physics Letters, 2015, 106, .	3.3	67
16	A high performance hybrid asymmetric supercapacitor via nano-scale morphology control of graphene, conducting polymer, and carbon nanotube electrodes. Journal of Materials Chemistry A, 2014, 2, 9964-9969.	10.3	57
17	Exohedral Physisorption of Ambient Moisture Scales Non-monotonically with Fiber Proximity in Aligned Carbon Nanotube Arrays. ACS Nano, 2014, 8, 4591-4599.	14.6	23
18	Advanced asymmetric supercapacitor based on conducting polymer and aligned carbon nanotubes with controlled nanomorphology. Nano Energy, 2014, 9, 176-185.	16.0	93

Noa Lachman

#	Article	IF	CITATIONS
19	Tailoring Thickness of Conformal Conducting Polymer Decorated Aligned Carbon Nanotube Electrodes for Energy Storage. Advanced Materials Interfaces, 2014, 1, 1400076.	3.7	28
20	Fracture behavior of carbon nanotube/carbon microfiber hybrid polymer composites. Journal of Materials Science, 2013, 48, 5590-5595.	3.7	25
21	Fracture behavior of nanotube–polymer composites: Insights on surface roughness and failure mechanism. Composites Science and Technology, 2013, 87, 157-163.	7.8	91
22	Hybrid supercapacitor materials from poly(3,4-ethylenedioxythiophene) conformally coated aligned carbon nanotubes. Electrochimica Acta, 2013, 112, 522-528.	5.2	36
23	Electrothermal Icing protection of Aerosurfaces Using Conductive Polymer Nanocomposites. , 2013, , .		18
24	Interfacial load transfer in carbon nanotube/ceramic microfiber hybrid polymer composites. Composites Science and Technology, 2012, 72, 1416-1422.	7.8	36
25	Application of continuously-monitored single fiber fragmentation tests to carbon nanotube/carbon microfiber hybrid composites. Composites Science and Technology, 2012, 72, 1711-1717.	7.8	41
26	Effect of scale and surface chemistry on the mechanical properties of carbon nanotubesâ€based composites. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 957-962.	2.1	9
27	Electronic and mechanical degradation of oxidized CNTs. Carbon, 2012, 50, 1734-1739.	10.3	35
28	Sensitivity of Carbon Nanotubes to the Storage of Stress in Polymers. Macromolecular Rapid Communications, 2011, 32, 1993-1997.	3.9	5
29	Correlation between interfacial molecular structure and mechanics in CNT/epoxy nano-composites. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1093-1098.	7.6	138
30	Raman Response of Carbon Nanotube/PVA Fibers under Strain. Journal of Physical Chemistry C, 2009, 113, 4751-4754.	3.1	71