Leszek Fiedor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/137502/publications.pdf

Version: 2024-02-01

304743 315739 1,549 57 22 38 citations h-index g-index papers 58 58 58 1503 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Metal-Substituted Bacteriochlorophylls. 1. Preparation and Influence of Metal and Coordination on Spectra. Journal of the American Chemical Society, 1998, 120, 3675-3683.	13.7	163
2	Understanding chlorophylls: Central magnesium ion and phytyl as structural determinants. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1491-1500.	1.0	117
3	Cyclic endoperoxides of \hat{l}^2 -carotene, potential pro-oxidants, as products of chemical quenching of singlet oxygen. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1709, 1-4.	1.0	93
4	Effects of heavy central metal on the ground and excited states of chlorophyll. Journal of Biological Inorganic Chemistry, 2005, 10, 453-462.	2.6	78
5	Metal-Substituted Bacteriochlorophylls. 2. Changes in Redox Potentials and Electronic Transition Energies Are Dominated by Intramolecular Electrostatic Interactions. Journal of the American Chemical Society, 1998, 120, 3684-3693.	13.7	68
6	Phytol as one of the determinants of chlorophyll interactions in solution. Photosynthesis Research, 2003, 78, 47-57.	2.9	56
7	Excitation Trap Approach to Analyze Size and Pigmentâ^Pigment Coupling: Reconstitution of LH1 Antenna ofRhodobacter sphaeroideswith Ni-Substituted Bacteriochlorophyllâ€. Biochemistry, 2001, 40, 3737-3747.	2.5	55
8	Dependence of singlet-energy transfer on the conjugation length of carotenoids reconstituted into the LH1 complex from Rhodospirillum rubrum G9. Chemical Physics Letters, 2004, 393, 184-191.	2.6	55
9	Photodynamics of the Bacteriochlorophyll–Carotenoid System. 2. Influence of Central Metal, Solvent and β-Carotene on Photobleaching of Bacteriochlorophyll Derivatives¶. Photochemistry and Photobiology, 2002, 76, 145.	2.5	50
10	Carotenoid-Induced Cooperative Formation of Bacterial Photosynthetic LH1 Complexâ€. Biochemistry, 2004, 43, 16487-16496.	2.5	49
11	Effects of Molecular Symmetry on the Electronic Transitions in Carotenoids. Journal of Physical Chemistry Letters, 2016, 7, 1821-1829.	4.6	39
12	Physical Mapping of bchG, orf427, andorf177 in the Photosynthesis Gene Cluster ofRhodobacter sphaeroides: Functional Assignment of the Bacteriochlorophyll Synthetase Gene. Journal of Bacteriology, 2000, 182, 3175-3182.	2.2	38
13	Photodynamics of the Bacteriochlorophyll–Carotenoid System. 1. Bacteriochlorophyll-photosensitized Oxygenation of β-Carotene in Acetone¶. Photochemistry and Photobiology, 2001, 74, 64.	2.5	38
14	Lessons from Chlorophylls: Modifications of Porphyrinoids Towards Optimized Solar Energy Conversion. Molecules, 2014, 19, 15938-15954.	3.8	37
15	Central Metal Determines Pharmacokinetics of Chlorophyll-Derived Xenobiotics. Journal of Medicinal Chemistry, 2008, 51, 4412-4418.	6.4	34
16	Recent Progress in Chemical Modifications of Chlorophylls and Bacteriochlorophylls for the Applications in Photodynamic Therapy. Current Medicinal Chemistry, 2015, 22, 3054-3074.	2.4	32
17	Steric Control of Bacteriochlorophyll Ligation. Journal of the American Chemical Society, 2006, 128, 454-458.	13.7	31
18	Hexacoordination of Bacteriochlorophyll in Photosynthetic Antenna LH1â€. Biochemistry, 2006, 45, 1910-1918.	2.5	30

#	Article	IF	Citations
19	Structural and Electronic Effects in the Metalation of Porphyrinoids. Theory and Experiment. Inorganic Chemistry, 2010, 49, 7362-7371.	4.0	30
20	Interplay between Acetate Ions, Peripheral Groups, and Reactivity of the Core Nitrogens in Transmetalation of Tetrapyrroles. Chemistry - A European Journal, 2008, 14, 9419-9430.	3.3	24
21	Tuning the Thermodynamics of Association of Transmembrane Helices. Journal of Physical Chemistry B, 2009, 113, 12831-12838.	2.6	24
22	Influence of Solvent Polarizability on the Keto-Enol Equilibrium in 4-[5-(naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl]benzene-1,3-diol. Journal of Fluorescence, 2015, 25, 1867-1874.	2.5	24
23	Expression of Enzymes Involved in Chlorophyll Catabolism in Arabidopsis Is Light Controlled Â. Plant Physiology, 2011, 157, 1497-1504.	4.8	22
24	Zinc-pheophorbide aâ€"Highly efficient low-cost photosensitizer against human adenocarcinoma in cellular and animal models. Photodiagnosis and Photodynamic Therapy, 2013, 10, 266-277.	2.6	22
25	Isolation and spectroscopic characterization of Zn(II), Cu(II), and Pd(II) complexes of 1,3,4-thiadiazole-derived ligand. Journal of Molecular Structure, 2017, 1128, 44-50.	3.6	22
26	Trapping of an Assembly Intermediate of Photosynthetic LH1 Antenna beyond B820 Subunit. Journal of Biological Chemistry, 2005, 280, 20921-20926.	3.4	21
27	Determinants of the activity and substrate recognition of breast cancer resistance protein (ABCG2). Drug Metabolism Reviews, 2014, 46, 459-474.	3.6	21
28	Intrinsic Photoprotective Mechanisms in Chlorophylls. Angewandte Chemie - International Edition, 2017, 56, 10457-10461.	13.8	21
29	The impact of LED lighting on the yield, morphological structure and some bioactive components in alfalfa (Medicago sativa L.) sprouts. Food Chemistry, 2019, 285, 53-58.	8.2	21
30	Photoprotective role of the xanthophyll cycle studied by means of modeling of xanthophyll–LHCII interactions. Chemical Physics, 2010, 373, 122-128.	1.9	19
31	Molecular symmetry determines the mechanism of a very efficient ultrafast excitation-to-heat conversion in Ni-substituted chlorophylls. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 30-37.	1.0	17
32	Antioxidant effects of carotenoids in a model pigment-protein complex Acta Biochimica Polonica, 2012, 59, .	0.5	17
33	The origin of the dark S $<$ sub $>$ 1 $<$ /sub $>$ state in carotenoids: a comprehensive model. Journal of the Royal Society Interface, 2019, 16, 20190191.	3.4	16
34	Triplet-driven chemical reactivity of \hat{l}^2 -carotene and its biological implications. Nature Communications, 2022, 13, 2474.	12.8	14
35	Nitrosylhemoglobin in photodynamically stressed human tumors growing in nude mice. Nitric Oxide - Biology and Chemistry, 2013, 35, 79-88.	2.7	13
36	Mechanistic Information on Cu ^{II} Metalation and Transmetalation of Chlorophylls. European Journal of Inorganic Chemistry, 2009, 2009, 2393-2406.	2.0	12

3

#	Article	IF	CITATIONS
37	Capillary electrophoresis as a tool for a costâ€effective assessment of the activity of plant membrane enzyme chlorophyllase. Electrophoresis, 2013, 34, 3341-3344.	2.4	12
38	High-Pressure and Theoretical Studies Reveal Significant Differences in the Electronic Structure and Bonding of Magnesium, Zinc, and Nickel Ions in Metalloporphyrinoids. Inorganic Chemistry, 2014, 53, 8473-8484.	4.0	12
39	Side Methyl Groups Control the Conformation and Contribute to Symmetry Breaking of Isoprenoid Chromophores. Angewandte Chemie - International Edition, 2018, 57, 6501-6506.	13.8	12
40	Fluorescence as a probe for physiological integrity of freshwater cyanobacteria. Hydrobiologia, 2012, 695, 73-81.	2.0	10
41	Fine tuning of copper(<scp>ii</scp>)–chlorophyll interactions in organic media. Metalation versus oxidation of the macrocycle. Dalton Transactions, 2015, 44, 6012-6022.	3.3	9
42	Electron paramagnetic resonance spectroscopy reveals alterations in the redox state of endogenous copper and iron complexes in photodynamic stress-induced ischemic mouse liver. Redox Biology, 2020, 34, 101566.	9.0	9
43	Excitation Energy Trapping and Dissipation by Ni-Substituted Bacteriochlorophyll <i>a</i> in Reconstituted LH1 Complexes from Rhodospirillum rubrum. Journal of Physical Chemistry B, 2013, 117, 11260-11271.	2.6	8
44	Tetrapyrrole pigments of photosynthetic antennae and reaction centers of higher plants: Structures, biophysics, functions, biochemistry, mechanisms of regulation, applications. Advances in Botanical Research, 2019, , 1-33.	1.1	8
45	Antioxidant effects of carotenoids in a model pigment-protein complex. Acta Biochimica Polonica, 2012, 59, 61-4.	0.5	8
46	Capillary coating as an important factor in optimization of the off-line and on-line MEKC assays of the highly hydrophobic enzyme chlorophyllase. Analytical and Bioanalytical Chemistry, 2017, 409, 1493-1501.	3.7	7
47	Design and Assembly of Functional Light-Harvesting Complexes. Advances in Photosynthesis and Respiration, 2009, , 913-940.	1.0	6
48	One ring is not enough to rule them all. Albumin-dependent ABCG2-mediated transport ofÂchlorophyll-derived photosensitizers European Journal of Pharmaceutical Sciences, 2021, 167, 106001.	4.0	4
49	Photodynamics of the Bacteriochlorophyll-Carotenoid System. 1. Bacteriochlorophyll-photosensitized Oxygenation of \hat{l}^2 -Carotene in Acetone $\hat{A}\P$. Photochemistry and Photobiology, 2001, 74, 64-71.	2.5	3
50	Intrinsic Photoprotective Mechanisms in Chlorophylls. Angewandte Chemie, 2017, 129, 10593-10597.	2.0	3
51	Tuning the Photophysical Features of Self-Assembling Photoactive Polypeptides for Light-Harvesting. Materials, 2019, 12, 3554.	2.9	3
52	Systemic Mobilization of Breast Cancer Resistance Protein in Response to Oncogenic Stress. Cancers, 2022, 14, 313.	3.7	3
53	Photodynamics of the Bacteriochlorophyll-Carotenoid System. 2. Influence of Central Metal, Solvent and \hat{l}^2 -Carotene on Photobleaching of Bacteriochlorophyll Derivatives \hat{A}^\P . Photochemistry and Photobiology, 2002, 76, 145-152.	2.5	2
54	Optimization of Western blotting analysis for the isolation and detection of membrane xenobiotic transporter ABCG2. Acta Biochimica Polonica, 2017, 64, 437-443.	0.5	2

LESZEK FIEDOR

#	Article	IF	CITATION
55	Side Methyl Groups Control the Conformation and Contribute to Symmetry Breaking of Isoprenoid Chromophores. Angewandte Chemie, 2018, 130, 6611-6616.	2.0	2
56	Chlorophyll <i>a</i> Ï€â€Cation Radical as Redox Mediator in Superoxide Dismutase (SOD) Mimetics. ChemPhysChem, 2021, 22, 344-348.	2.1	2
57	Reconstitution Approach to Tune Spectral Features of Light Harvesting Complexes for Improved Light Absorption and Energy Transfer. Energy Procedia, 2014, 47, 113-122.	1.8	1