Maxim Yu Maximov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1374977/publications.pdf

Version: 2024-02-01

933447 839539 32 359 10 18 citations h-index g-index papers 32 32 32 403 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Atomic Layer Deposition of NiO to Produce Active Material for Thin-Film Lithium-Ion Batteries. Coatings, 2019, 9, 301.	2.6	57
2	Biomass-Derived Oxygen and Nitrogen Co-Doped Porous Carbon with Hierarchical Architecture as Sulfur Hosts for High-Performance Lithium/Sulfur Batteries. Nanomaterials, 2017, 7, 402.	4.1	45
3	Atomic layer deposition of tin oxide using tetraethyltin to produce high-capacity Li-ion batteries. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	31
4	Li-rich and Ni-rich transition metal oxides: Coating and core-shell structures. Applied Surface Science, 2019, 474, 25-33.	6.1	27
5	Inkjet Printing of Liâ€Rich Cathode Material for Thinâ€Film Lithiumâ€Ion Microbatteries. Energy Technology, 2020, 8, 1901086.	3.8	27
6	Atomic Layer Deposition of Lithium–Nickel–Silicon Oxide Cathode Material for Thin-Film Lithium-Ion Batteries. Energies, 2020, 13, 2345.	3.1	24
7	Characterization and Electrochemical Performance at High Discharge Rates of Tin Dioxide Thin Films Synthesized by Atomic Layer Deposition. Journal of Electronic Materials, 2017, 46, 6571-6577.	2.2	22
8	Antibacterial and Osteogenic Properties of Ag Nanoparticles and Ag/TiO2 Nanostructures Prepared by Atomic Layer Deposition. Journal of Functional Biomaterials, 2022, 13, 62.	4.4	16
9	Cyclic stability of the anode material based on tin(IV) oxide for thin-film current sources. Russian Journal of Applied Chemistry, 2016, 89, 679-681.	0.5	14
10	Low-temperature deposition of tin(IV) oxide films for thin-film power sources. Russian Journal of Applied Chemistry, 2016, 89, 805-808.	0.5	12
11	Atomic Layer Deposition of Ni-Co-O Thin-Film Electrodes for Solid-State LIBs and the Influence of Chemical Composition on Overcapacity. Nanomaterials, 2021, 11, 907.	4.1	12
12	Improvement of the cycle life of LiCoO2-based electrodes used in lithium-ion batteries. Russian Journal of Applied Chemistry, 2015, 88, 898-899.	0.5	9
13	Synthesis and electrochemical performance of the Li-rich cathode material Li1.17Ni0.12Co0.13Mn0.58O2 for lithium-ion batteries. Russian Journal of Applied Chemistry, 2016, 89, 1607-1611.	0.5	8
14	Interconnected nitrogen-doped carbon nanofibers derived from polypyrrole for high-performance Li/S batteries. Russian Journal of Applied Chemistry, 2016, 89, 1336-1340.	0.5	8
15	Synthesis of Li-ion Battery Cathode Materials Based on Lithiated Transition Metal Oxides by Spray Method. Russian Journal of Applied Chemistry, 2018, 91, 53-57.	0.5	7
16	The Effects of Chemical Etching and Ultra-Fine Grain Structure of Titanium on MG-63 Cells Response. Metals, 2021, 11, 510.	2.3	6
17	Study of Structural Changes in LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries by X-Ray Diffraction Analysis in the In Situ Mode. Russian Journal of Applied Chemistry, 2019, 92, 1013-1019.	0.5	5
18	Development of the titanium meshes by selective laser melting and chemical etching for using as medical implants. Materials Today: Proceedings, 2020, 30, 746-751.	1.8	5

#	Article	IF	CITATIONS
19	The Use of the TMA as Stabilizing Reagent for the Li-O System Obtained by Atomic Layer Deposition. Key Engineering Materials, 0, 822, 787-794.	0.4	4
20	Inks Development for 3D Printing Cathode of Li-Ion Microbatteries. Proceedings (mdpi), 2019, 3, 7.	0.2	3
21	Features of the synthesis of lithium-based ternary oxide nanofilms by atomic layer deposition with LHMDS for thin-film LIBs. Materials Today: Proceedings, 2020, 25, 6-12.	1.8	3
22	Application of polymethyl methacrylate in cathode materials of lithium-ion batteries. Russian Journal of Applied Chemistry, 2015, 88, 1633-1636.	0.5	2
23	Atomic layer deposition of tin oxide nanofilms using tetraethyltin. , 2016, , .		2
24	Microscopic study of Ni-rich cathode formation from ALD multilayered thin films. Materials Letters, 2022, 307, 130990.	2.6	2
25	MG-63 and FetMSC Cell Response on Atomic Layer Deposited TiO2 Nanolayers Prepared Using Titanium Tetrachloride and Tetraisopropoxide. Coatings, 2022, 12, 668.	2.6	2
26	Synthesis of Tungsten Diselenide Nanoparticles by Chemical Vapor Condensation Method. Medziagotyra, 2015, 21, .	0.2	1
27	Technological and economic perspectives for development and manufacturing of cathode materials for lithium-ion batteries for transport industry. SHS Web of Conferences, 2018, 44, 00048.	0.2	1
28	Atomic Layer Deposition of Lithium-Silicon-Tin Oxide Nanofilms for High Performance Thin Film Batteries Anodes. Solid State Phenomena, 0, 299, 1058-1063.	0.3	1
29	Plasma Enhanced Atomic Layer Deposition of Tantalum (V) Oxide. Coatings, 2021, 11, 1206.	2.6	1
30	Atomic Layer Deposition of the Lithium–Silicon–Tin Oxide System for Solid-State Thin-Film Lithium Batteries. Russian Metallurgy (Metally), 2020, 2020, 1643-1643.	0.5	1
31	Electrochemical activity and SEI formation inhibition of Al in Ni–Al-O ALD thin films. Ionics, 2022, 28, 259-271.	2.4	1
32	Atomic Layer Deposition of Li–Me–O Thin Films as Electrode Materials for Nanodevices Power Sources. Proceedings (mdpi), 2018, 3, .	0.2	0