
IvÃ;n L Csanaky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1374947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative-profiling of bile acids and their conjugates in mouse liver, bile, plasma, and urine using LC–MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 873, 209-217.	2.3	223
2	Organic anion-transporting polypeptide 1b2 (Oatp1b2) is important for the hepatic uptake of unconjugated bile acids: Studies in Oatp1b2-null mice. Hepatology, 2011, 53, 272-281.	7.3	98
3	Importance of Large Intestine in Regulating Bile Acids and Glucagon-Like Peptide-1 in Germ-Free Mice. Drug Metabolism and Disposition, 2015, 43, 1544-1556.	3.3	75
4	Intestine-Specific Deletion of SIRT1 in Mice Impairs DCoH2–HNF-1α–FXR Signaling and Alters Systemic Bile Acid Homeostasis. Gastroenterology, 2014, 146, 1006-1016.	1.3	57
5	Role of hepatic transporters in prevention of bile acid toxicity after partial hepatectomy in mice. American Journal of Physiology - Renal Physiology, 2009, 297, G419-G433.	3.4	52
6	Organic anion-transporting polypeptide 1a4 (Oatp1a4) is important for secondary bile acid metabolism. Biochemical Pharmacology, 2013, 86, 437-445.	4.4	20
7	Editor's Highlight: Clofibrate Decreases Bile Acids in Livers of Male Mice by Increasing Biliary Bile Acid Excretion in a PPARα-Dependent Manner. Toxicological Sciences, 2017, 160, 351-360.	3.1	20
8	Activation of Constitutive Androstane Receptor (CAR) in Mice Results in Maintained Biliary Excretion of Bile Acids Despite a Marked Decrease of Bile Acids in Liver. Toxicological Sciences, 2016, 151, 403-418.	3.1	19
9	Multidrug Resistance-Associated Protein 3 Plays an Important Role in Protection against Acute Toxicity of Diclofenac. Drug Metabolism and Disposition, 2015, 43, 944-950.	3.3	17
10	H1-antihistamines exacerbate high-fat diet-induced hepatic steatosis in wild-type but not in apolipoprotein E knockout mice. American Journal of Physiology - Renal Physiology, 2014, 307, G219-G228.	3.4	16
11	Aryl hydrocarbon receptor (AhR) mediated short-term effects of 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD) on bile acid homeostasis in mice. Toxicology and Applied Pharmacology, 2018, 343, 48-61.	2.8	14
12	Activation of PPARα decreases bile acids in livers of female mice while maintaining bile flow and biliary bile acid excretion. Toxicology and Applied Pharmacology, 2018, 338, 112-123.	2.8	12
13	Identification and Characterization of Efflux Transporters That Modulate the Subtoxic Disposition of Diclofenac and Its Metabolites. Drug Metabolism and Disposition, 2019, 47, 1080-1092.	3.3	12
14	Calorie Restriction Increases P-Glycoprotein and Decreases Intestinal Absorption of Digoxin in Mice. Drug Metabolism and Disposition, 2016, 44, 366-369.	3.3	8
15	Effects of ablation and activation of Nrf2 on bile acid homeostasis in male mice. Toxicology and Applied Pharmacology, 2020, 403, 115170.	2.8	6
16	Effects of Absence of Constitutive Androstane Receptor (CAR) on Bile Acid Homeostasis in Male and Female Mice. Toxicological Sciences, 2019, 171, 132-145.	3.1	4
17	Activation of Nrf2 decreases bile acid concentrations in livers of female mice. Xenobiotica, 2021, 51, 605-615.	1.1	3
18	Interaction of Oatp1b2 expression and nonalcoholic steatohepatitis on pravastatin plasma clearance. Biochemical Pharmacology, 2020, 174, 113780.	4.4	2

#	Article	IF	CITATIONS
19	Effects of patent ductus venosus on bile acid homeostasis in aryl hydrocarbon receptor (AhR)-null mice. Toxicology and Applied Pharmacology, 2020, 403, 115136.	2.8	1