Fernando Calle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1374586/publications.pdf

Version: 2024-02-01

203 papers 7,046 citations

76196 40 h-index 78 g-index

204 all docs

204 docs citations

times ranked

204

6364 citing authors

#	Article	IF	Citations
1	Recent trends in graphene supercapacitors: from large area to microsupercapacitors. Sustainable Energy and Fuels, 2021, 5, 1235-1254.	2.5	105
2	Exciton–Plasmon Coupling in 2D Semiconductors Accessed by Surface Acoustic Waves. ACS Photonics, 2021, 8, 1698-1704.	3.2	11
3	Dynamic Local Strain in Graphene Generated by Surface Acoustic Waves. Nano Letters, 2020, 20, 402-409.	4.5	14
4	A review on 2D transition metal di-chalcogenides and metal oxide nanostructures based NO2 gas sensors. Materials Science in Semiconductor Processing, 2020, 107, 104865.	1.9	110
5	Participation of women in doctorate, research, innovation, and management activities at Universidad Politécnica de Madrid: analysis of the decade 2006–2016. Scientometrics, 2019, 120, 1059-1089.	1.6	6
6	Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 047-047.	1.9	85
7	Advanced Graphene-Based Transparent Conductive Electrodes for Photovoltaic Applications. Micromachines, 2019, 10, 402.	1.4	15
8	A design for an electromagnetic filter for precision energy measurements at the tritium endpoint. Progress in Particle and Nuclear Physics, 2019, 106, 120-131.	5 . 6	24
9	Effect of quasiparticle excitations and exchange-correlation in Coulomb drag in graphene. Communications Physics, 2019, 2, .	2.0	5
10	Reduced graphene oxide/polyaniline electrochemical supercapacitors fabricated by laser. Applied Surface Science, 2019, 467-468, 691-697.	3.1	45
11	Acoustically-driven surface and hyperbolic plasmon-phonon polaritons in graphene/h-BN heterostructures on piezoelectric substrates. Journal Physics D: Applied Physics, 2018, 51, 204004.	1.3	20
12	Modification of strain and 2DEG density induced by wafer bending of AlGaN/GaN heterostructure: Influence of edges caused by processing. AIP Advances, 2018, 8, 035318.	0.6	3
13	Thermal and Electrical Stability Assessment of AlGaN/GaN Metal–Oxide–Semiconductor High-Electron Mobility Transistors (MOS-HEMTs) With HfO ₂ Gate Dielectric. IEEE Transactions on Electron Devices, 2018, 65, 3142-3148.	1.6	14
14	Physics-Based Analytical Model for Input, Output, and Reverse Capacitance of a GaN HEMT With the Field-Plate Structure. IEEE Transactions on Power Electronics, 2017, 32, 2189-2202.	5 . 4	28
15	Effects of Gd2O3 Gate Dielectric on Proton-Irradiated AlGaN/GaN HEMTs. IEEE Electron Device Letters, 2017, 38, 611-614.	2.2	15
16	Impact of 2D-Graphene on SiN Passivated AlGaN/GaN MIS-HEMTs Under Mist Exposure. IEEE Electron Device Letters, 2017, 38, 1441-1444.	2.2	2
17	Polyaniline nanofiber sponge filled graphene foam as high gravimetric and volumetric capacitance electrode. Journal of Power Sources, 2016, 317, 35-42.	4.0	49
18	Thermal Assessment of AlGaN/GaN MOS-HEMTs on Si Substrate Using Gd ₂ O ₃ as Gate Dielectric. IEEE Transactions on Electron Devices, 2016, 63, 2729-2734.	1.6	15

#	Article	IF	CITATIONS
19	Automatic graphene transfer system for improved material quality and efficiency. Scientific Reports, 2016, 6, 21676.	1.6	34
20	Electro-optical characterization of IC compatible microcantilevers. Microsystem Technologies, 2016, 22, 2467-2474.	1.2	1
21	Improvement of the adhesion between polyaniline and commercial carbon paper by acid treatment and its application in supercapacitor electrodes. Composite Interfaces, 2016, 23, 133-143.	1.3	10
22	Trapping phenomena in AlGaN and InAlN barrier HEMTs with different geometries. Semiconductor Science and Technology, 2015, 30, 035015.	1.0	11
23	Post-CMOS compatible high-throughput fabrication of AlN-based piezoelectric microcantilevers. Journal of Micromechanics and Microengineering, 2015, 25, 025003.	1.5	8
24	Graphene foam functionalized with electrodeposited nickel hydroxide for energy applications. Diamond and Related Materials, 2015, 57, 63-67.	1.8	15
25	Electroreflectance characterization of AllnGaN/GaN high-electron mobility heterostructures. Semiconductor Science and Technology, 2015, 30, 085014.	1.0	5
26	Simulation of temperature and electric field-dependent barrier traps effects in AlGaN/GaN HEMTs. Semiconductor Science and Technology, 2015, 30, 015010.	1.0	5
27	Method for extracting relevant electrical parameters from graphene field-effect transistors using a physical model. Journal of Applied Physics, 2015, 117, .	1.1	9
28	PostCMOS compatible sacrificial layers for aluminum nitride microcantilevers. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2014, 13, 043012.	1.0	2
29	Influence of fabrication steps on optical and electrical properties of InN thin films. Semiconductor Science and Technology, 2014, 29, 095010.	1.0	1
30	Physical modeling and optimization of a GaN HEMT design with a field plate structure for high frequency application. , 2014 , , .		4
31	Impact of device geometry at different ambient temperatures on the self-heating of GaN-based HEMTs. Semiconductor Science and Technology, 2014, 29, 115013.	1.0	14
32	Physical model for GaN HEMT design optimization in high frequency switching applications. , 2014, , .		2
33	MnO2-Based Electrochemical Supercapacitors on Flexible Carbon Substrates. Journal of Electronic Materials, 2014, 43, 1188-1193.	1.0	14
34	Thermionic-Field Emission Barrier Between Nanocrystalline Diamond and Epitaxial 4H-SiC. IEEE Electron Device Letters, 2014, 35, 1173-1175.	2.2	6
35	Analysis of InAl(Ga)N/GaN wet-etching by structural, morphological and electrical methods. Semiconductor Science and Technology, 2014, 29, 075003.	1.0	1
36	Direct comparison of traps in InAlN/GaN and AlGaN/GaN high electron mobility transistors using constant drain current deep level transient spectroscopy. Applied Physics Letters, 2013, 103, .	1.5	51

#	Article	IF	Citations
37	Impact of Intrinsic Stress in Diamond Capping Layers on the Electrical Behavior of AlGaN/GaN HEMTs. IEEE Transactions on Electron Devices, 2013, 60, 3149-3156.	1.6	37
38	Simple and Accurate Method to Estimate Channel Temperature and Thermal Resistance in AlGaN/GaN HEMTs. IEEE Transactions on Electron Devices, 2013, 60, 4105-4111.	1.6	55
39	Coupling Light into Graphene Plasmons through Surface Acoustic Waves. Physical Review Letters, 2013, 111, 237405.	2.9	95
40	Application of GaN FET in 1MHz large signal bandwidth power supply for radio frequency power amplifier. , $2013,$, .		1
41	Diamond underlayer microstructure effect on the orientation of AlN piezoelectric layers for high frequency SAW resonators by TEM. Microelectronic Engineering, 2013, 112, 193-197.	1.1	9
42	Investigation of AllnN barrier ISFET structures with GaN capping for pH detection. Sensors and Actuators B: Chemical, 2013, 176, 704-707.	4.0	22
43	Simulation of thermal management in AlGaN/GaN HEMTs with integrated diamond heat spreaders. Semiconductor Science and Technology, 2013, 28, 055010.	1.0	50
44	High precision pressure sensors based on SAW devices in the GHz range. Sensors and Actuators A: Physical, 2013, 189, 364-369.	2.0	89
45	Etching of AlGaN/GaN HEMT structures by Cl <inf>2</inf> -based ICP., 2013,,.		2
46	Structural and morphological studies on wet-etched InAlGaN barrier HEMT structures. Semiconductor Science and Technology, 2013, 28, 055007.	1.0	4
47	Impact of AlN Spacer on Metal–Semiconductor–Metal Pt–InAlGaN/GaN Heterostructures for Ultraviolet Detection. Japanese Journal of Applied Physics, 2013, 52, 08JK04.	0.8	2
48	Systematic Optical Characterization of Two-Dimensional Electron Gases in InAlN/GaN-Based Heterostructures with Different In Content. Japanese Journal of Applied Physics, 2013, 52, 08JK02.	0.8	1
49	Coupling Light into Graphene Plasmons through Surface Acoustic Waves. Physical Review Letters, 2013, 111, .	2.9	1
50	Role of surface trap states on two-dimensional electron gas density in InAlN/AlN/GaN heterostructures. Applied Physics Letters, 2012, 100, .	1.5	28
51	Vertical conduction mechanism of the epitaxial graphene/n-type 4H-SiC heterojunction at cryogenic temperatures. Applied Physics Letters, 2012, 100, 193506.	1.5	12
52	Optimization of AlN thin layers on diamond substrates for high frequency SAW resonators. Materials Letters, 2012, 66, 339-342.	1.3	52
53	Nanocrack-induced leakage current in AllnN/AlN/GaN. Scripta Materialia, 2012, 66, 327-330.	2.6	7
54	Fabrication of sub-100nm IDT SAW devices on insulating, semiconducting and conductive substrates. Journal of Materials Processing Technology, 2012, 212, 707-712.	3.1	10

#	Article	IF	Citations
55	Super-High-Frequency SAW Resonators on AlN/Diamond. IEEE Electron Device Letters, 2012, 33, 495-497.	2.2	93
56	Impact of \$hbox{N}_{2}\$ Plasma Power Discharge on AlGaN/GaN HEMT Performance. IEEE Transactions on Electron Devices, 2012, 59, 374-379.	1.6	22
57	Evidence of charge carrier number fluctuations in InN thin films?. , 2011, , .		0
58	High frequency high-order Rayleigh modes in ZnO/GaAs. , 2011, , .		0
59	Influence of substrate crystallography on the room temperature synthesis of AIN thin films by reactive sputtering. Applied Surface Science, 2011, 257, 9306-9313.	3.1	16
60	Sputter optimization of AlN on diamond substrates for high frequency SAW resonators. , $2011, \ldots$		0
61	Fabrication of high frequency SAW resonators using AlN/Diamond/Si technology. , 2011, , .		0
62	Effect of substrate–target distance and sputtering pressure in the synthesis of AlN thin films. Microsystem Technologies, 2011, 17, 381-386.	1.2	8
63	Influence of temperature and drain current on source and drain resistances in AlGaN/GaN HEMTs. Solid-State Electronics, 2011, 63, 184-188.	0.8	6
64	Temperature and time dependent threshold voltage characterization of AlGaN/GaN high electron mobility transistors. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2232-2234.	0.8	5
65	Volume charge carrier number fluctuations probed by low frequency noise measurements in InN layers. Applied Physics Letters, 2011, 98, 252104.	1.5	8
66	Fabrication and characterization at high temperature of AlGaN/GaN enhancement-mode HEMTs. , 2011 , , .		3
67	Synthesis of c-axis oriented AlN thin films on different substrates: A review. Materials Research Bulletin, 2010, 45, 1039-1045.	2.7	129
68	Investigation of InN layers grown by molecular beam epitaxy on GaN templates. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1079-1082.	0.8	4
69	Voltage tunable surface acoustic wave phase shifter on AlGaN/GaN. Applied Physics Letters, 2010, 96, .	1.5	19
70	OPTIMAL SYNTHESIS OF C-AXIS ORIENTED ALN THIN FILMS. Integrated Ferroelectrics, 2010, 113, 139-148.	0.3	0
71	Static and dynamic determination of the mechanical properties of nanocrystalline diamond micromachined structures. Journal of Micromechanics and Microengineering, 2009, 19, 115016.	1.5	22
72	The Kink Effect at Cryogenic Temperatures in Deep Submicron AlGaN/GaN HEMTs. IEEE Electron Device Letters, 2009, 30, 209-212.	2.2	43

#	Article	IF	CITATIONS
73	Characterization of a pH sensor based on an AlGiaN/GaN transistor. , 2009, , .		1
74	High-Temperature Microwave Performance of Submicron AlGaN/GaN HEMTs on SiC. IEEE Electron Device Letters, 2009, 30, 808-810.	2.2	17
75	High temperature assessment of nitride-based devices. Journal of Materials Science: Materials in Electronics, 2008, 19, 189-193.	1.1	10
76	High temperature behaviour of GaN HEMT devices on Si(111) and sapphire substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1971-1973.	0.8	21
77	Fabrication and stress relief modelling of GaN based MEMS test structures grown by MBE on Si(111). Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1974-1976.	0.8	2
78	Temperatureâ€dependent highâ€frequency performance of deep submicron AlGaN/GaN HEMTs. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2994-2997.	0.8	1
79	AlGaN/GaNâ€based SAW delayâ€line oscillators. Microwave and Optical Technology Letters, 2008, 50, 2967-2970.	0.9	1
80	Effects of $hbox{N}_{2}$ Plasma Pretreatment on the SiN Passivation of AlGaN/GaN HEMT. IEEE Electron Device Letters, 2008, 29, 209-211.	2.2	36
81	Exciton impact-ionization dynamics modulated by surface acoustic waves in GaN. Physical Review B, 2007, 75, .	1.1	16
82	Noise study in photodiodes based on InGaN/GaN MQW. , 2007, , .		1
83	Selective etching of AllnN/GaN heterostructures for MEMS technology. Microelectronic Engineering, 2007, 84, 1152-1156.	1.1	14
84	High temperature characterization of Pt-based Schottky diodes on AlGaN/GaN heterostructures. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1709-1712.	0.8	8
85	6C-3 Field-Effect-Modulated SAW Devices on AlGaN/GaN Heterostructures. , 2006, , .		2
86	GaN reactive ion etching using SiCl4:Ar:SF6 chemistry. Journal of Materials Science: Materials in Electronics, 2005, 16, 409-413.	1.1	5
87	Nitride-based surface acoustic wave devices and applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 976-983.	0.8	32
88	Morphology and optical properties of InN layers grown by molecular beam epitaxy on silicon substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2289-2292.	0.8	22
89	Anisotropy-induced polarization mixture of surface acoustic waves inGaNâ^•c-sapphire heterostructures. Physical Review B, 2005, 72, .	1.1	37
90	Active SAW devices on 2DEG heterostructures. Electronics Letters, 2004, 40, 1384.	0.5	25

#	Article	IF	Citations
91	Anisotropic propagation of surface acoustic waves on nitride layers. Superlattices and Microstructures, 2004, 36, 815-823.	1.4	10
92	Remote collection and measurement of photogenerated carriers swept by surface acoustic waves in GaN. Applied Physics Letters, 2004, 84, 3166-3168.	1.5	17
93	Surface-acoustic-wave-controlled photodetectors. , 2004, 5502, 439.		1
94	AlGaN/GaN HEMTS: material, processing, and characterization. Journal of Materials Science: Materials in Electronics, 2003, 14, 271-277.	1.1	4
95	Engineering of an insulating buffer and use of AlN interlayers: two optimisations for AlGaN–GaN HEMT-like structures. Physica Status Solidi A, 2003, 195, 93-100.	1.7	64
96	Wide-bandgap semiconductor ultraviolet photodetectors. Semiconductor Science and Technology, 2003, 18, R33-R51.	1.0	1,196
97	High-responsivity submicron metal-semiconductor-metal ultraviolet detectors. Applied Physics Letters, 2002, 81, 1902-1904.	1.5	49
98	Assessment of GaN metal–semiconductor–metal photodiodes for high-energy ultraviolet photodetection. Applied Physics Letters, 2002, 80, 3198-3200.	1.5	86
99	Interplay between GaN and AlN sublattices in wurtzite AlxGa1â^'xN alloys revealed by Raman spectroscopy. Journal of Applied Physics, 2002, 92, 223-226.	1.1	6
100	Hypersonic characterization of sound propagation velocity in AlxGa1â^'xN thin films. Journal of Applied Physics, 2002, 92, 6868-6874.	1.1	27
101	Thermal stability of Pt- and Ni-based Schottky contacts on GaN and Al0.31Ga0.69N. Semiconductor Science and Technology, 2002, 17, L47-L54.	1.0	40
102	Submicron technology for III-nitride semiconductors. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2071.	1.6	26
103	In situgrowth monitoring of distributed GaN–AlGaN Bragg reflectors by metalorganic vapor phase epitaxy. Applied Physics Letters, 2002, 80, 174-176.	1.5	23
104	Strong localization in InGaN layers with high In content grown by molecular-beam epitaxy. Applied Physics Letters, 2002, 80, 231-233.	1.5	72
105	Resonant-cavity InGaN multiple-quantum-well green light-emitting diode grown by molecular-beam epitaxy. Applied Physics Letters, 2002, 80, 2198-2200.	1.5	43
106	Nitride RCLEDs Grown by MBE for POF Applications. Physica Status Solidi A, 2002, 192, 277-285.	1.7	16
107	From Ultraviolet to Green InGaN-Based Conventional and Resonant-Cavity Light-Emitting Diodes Grown by Molecular Beam Epitaxy. Physica Status Solidi A, 2002, 192, 341-347.	1.7	4
108	High-Quality Distributed Bragg Reflectors for Resonant-Cavity Light-Emitting Diode Applications. Physica Status Solidi A, 2002, 192, 389-393.	1.7	5

#	Article	IF	CITATIONS
109	Novel Approaches for Metal-Semiconductor-Metal GaN UV Photodetectors. Physica Status Solidi A, 2002, 194, 476-479.	1.7	8
110	Brillouin characterization of the acousticwaves phase-velocity in AlxGa1â^xN epilayers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 168-171.	1.7	5
111	Nanotechnology for SAW devices on AlN epilayers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 154-158.	1.7	34
112	AlN buffer layer thickness influence on inversion domains in GaN/AlN/Si(111). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 181-184.	1.7	8
113	Structural and optical characterization of thick InGaN layers and InGaN/GaN MQW grown by molecular beam epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 131-134.	1.7	22
114	Growth and characterization of high-quality 10-period AlGaN/GaN Bragg reflectors grown by molecular beam epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 31-34.	1.7	4
115	Plasma-assisted MBE growth of group-III nitrides: from basics to device applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 189-196.	1.7	10
116	MBE-grown high-quality (Al,Ga)N/GaN distributed Bragg reflectors for resonant cavity LEDs. Semiconductor Science and Technology, 2001, 16, 913-917.	1.0	16
117	III nitrides and UV detection. Journal of Physics Condensed Matter, 2001, 13, 7115-7137.	0.7	229
118	Fast AlGaN metal-semiconductor-metal photodetectors grown on Si(111). Electronics Letters, 2001, 37, 239.	0.5	7
119	Novel Sensor Applications of group-III nitrides. Materials Research Society Symposia Proceedings, 2001, 693, 253.	0.1	2
120	Molecular beam epitaxy growth and doping of III-nitrides on $Si(111)$: layer morphology and doping efficiency. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 82, 2-8.	1.7	40
121	Application and Performance of GaN Based UV Detectors. Physica Status Solidi A, 2001, 185, 91-97.	1.7	22
122	Effect of Dielectric Layers on the Performance of AlGaN-Based UV Schottky Photodiodes. Physica Status Solidi A, 2001, 188, 307-310.	1.7	7
123	Reliability of Schottky Contacts on AlGaN. Physica Status Solidi A, 2001, 188, 367-370.	1.7	18
124	Study of (Al,Ga)N Bragg Mirrors Grown on Al2O3(0001) and Si(111) by Metalorganic Vapor Phase Epitaxy. Physica Status Solidi A, 2001, 188, 899-903.	1.7	9
125	AlGaN photodetectors grown on Si(111) by molecular beam epitaxy. Journal of Crystal Growth, 2001, 230, 544-548.	0.7	20
126	AlGaN-based UV photodetectors. Journal of Crystal Growth, 2001, 230, 537-543.	0.7	153

#	Article	IF	CITATIONS
127	Visible-blind ultraviolet photodetectors based on ZnMgBeSe Schottky barrier diodes. Applied Physics Letters, 2001, 78, 4190-4192.	1.5	29
128	High-quality distributed Bragg reflectors based on AlxGa1â^'xN/GaN multilayers grown by molecular-beam epitaxy. Applied Physics Letters, 2001, 79, 2136-2138.	1.5	25
129	Present Status of III-Nitride Based Photodetectors. Materials Research Society Symposia Proceedings, 2000, 622, 371.	0.1	8
130	(Al,Ga)N Ultraviolet Photodetectors and Applications. Physica Status Solidi A, 2000, 180, 293-300.	1.7	11
131	Wet etching of GaN grown by molecular beam epitaxy on Si(111). Semiconductor Science and Technology, 2000, 15, 996-1000.	1.0	120
132	AlGaN-based structures on sapphire for visible blind Schottky-barrier UV photodetectors: toward high-performance device applications. , 2000, , .		0
133	High detectivity ZnSe-based Schottky barrier photodetectors for blue and near-ultraviolet spectral range. Electronics Letters, 2000, 36, 826.	0.5	21
134	High visible rejection AlGaN photodetectors on Si(111) substrates. Applied Physics Letters, 2000, 76, 2785-2787.	1.5	42
135	Time response analysis of ZnSe-based Schottky barrier photodetectors. Applied Physics Letters, 2000, 77, 2761-2763.	1.5	39
136	High-quality Si-implanted In0.53Ga0.47As epitaxial layers and their application to n+p junction devices. Journal of Applied Physics, 2000, 87, 3478-3482.	1.1	3
137	Low-noise metal-insulator-semiconductor UV photodiodes based on GaN. Electronics Letters, 2000, 36, 2096.	0.5	19
138	Analysis and modeling of AlxGa1â^'xN-based Schottky barrier photodiodes. Journal of Applied Physics, 2000, 88, 2081-2091.	1.1	97
139	Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy. Physical Review B, 2000, 62, 16826-16834.	1.1	345
140	AlGaN Photodiodes For Monitoring Solar UV Radiation. Journal of Geophysical Research, 2000, 105, 4865-4871.	3.3	23
141	Low noise AlGaN metal-semiconductor-metal photodiodes. Electronics Letters, 1999, 35, 240.	0.5	12
142	Si-doped AlxGa1-xN photoconductive detectors. Semiconductor Science and Technology, 1999, 14, 685-689.	1.0	40
143	AlGaN-based photodetectors for solar UV applications. , 1999, 3629, 200.		5
144	High UV/visible contrast photodiodes based on epitaxial lateral overgrown GaN layers. Electronics Letters, 1999, 35, 1488.	0.5	22

#	Article	IF	Citations
145	Nanoindentation on AlGaN thin films. Journal of Applied Physics, 1999, 86, 6773-6778.	1.1	65
146	Low pressure MOVPE grown AlGaN for UV photodetector applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 59, 401-406.	1.7	11
147	Growth of III-nitrides on Si(111) by molecular beam epitaxy Doping, optical, and electrical properties. Journal of Crystal Growth, 1999, 201-202, 296-317.	0.7	189
148	MBE growth of GaN and AlGaN layers on Si(111) substrates: doping effects. Journal of Crystal Growth, 1999, 201-202, 415-418.	0.7	20
149	Visible-blindness in photoconductive and photovoltaic AlGaN ultraviolet detectors. Journal of Electronic Materials, 1999, 28, 240-245.	1.0	46
150	Schottky Barrier Ultraviolet Photodetectors on Epitaxial Lateral Overgrown GaN. Physica Status Solidi A, 1999, 176, 141-145.	1.7	18
151	Effects of Bias on the Responsivity of GaN Metal–Semiconductor–Metal Photodiodes. Physica Status Solidi A, 1999, 176, 157-161.	1.7	26
152	AlGaN metal–semiconductor–metal photodiodes. Applied Physics Letters, 1999, 74, 3401-3403.	1.5	126
153	Metalorganic vapor-phase epitaxy-grown AlGaN materials for visible-blind ultraviolet photodetector applications. Journal of Applied Physics, 1999, 86, 5286-5292.	1.1	92
154	The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on $Si(1\ 1\ 1)$. Journal of Crystal Growth, 1998, 183, 23-30.	0.7	303
155	Growth optimization and doping with Si and Be of high quality GaN on $Si(111)$ by molecular beam epitaxy. Journal of Electronic Materials, 1998, 27, 276-281.	1.0	37
156	Influence of interface dislocations on surface kinetics during epitaxial growth of InGaAs. Applied Surface Science, 1998, 123-124, 303-307.	3.1	6
157	Low frequency noise and screening effects in AlGaN/GaN HEMTs. Electronics Letters, 1998, 34, 2357.	0.5	23
158	GaN-based solar-ultraviolet detection instrument. Applied Optics, 1998, 37, 5058.	2.1	33
159	High-performance GaN p-n junction photodetectors for solar ultraviolet applications. Semiconductor Science and Technology, 1998, 13, 1042-1046.	1.0	205
160	Interplay between Interface Dislocations and Surface Kinetic: A Contribution to the Roughness of Strained Epitaxial Layers. Defect and Diffusion Forum, 1998, 157-159, 211-0.	0.4	1
161	Blue-U.V. Homojunction GaN LEDs Fabricated by MOVPE. Materials Science Forum, 1998, 264-268, 1425-1428.	0.3	1
162	Experimental evidence for a Be shallow acceptor in GaN grown on Si(111) by molecular beam epitaxy. Semiconductor Science and Technology, 1998, 13, 1130-1133.	1.0	43

#	Article	IF	CITATIONS
163	AlxGa1â^'xN:Si Schottky barrier photodiodes with fast response and high detectivity. Applied Physics Letters, 1998, 73, 2146-2148.	1.5	73
164	Effect of Ga/Si interdiffusion on optical and transport properties of GaN layers grown on Si(111) by molecular-beam epitaxy. Physical Review B, 1998, 58, 1550-1559.	1.1	92
165	Analysis of the Visible and UV Electroluminescence in Homojunction GaN LED's. MRS Internet Journal of Nitride Semiconductor Research, 1998, 3, 1.	1.0	30
166	Ultraviolet Photodetectors Based on Al _x Ga _{1-x} N Schottky Barriers. MRS Internet Journal of Nitride Semiconductor Research, 1998, 3, 1.	1.0	17
167	Luminescence of Be-doped GaN layers grown by molecular beam epitaxy on Si (111) MRS Internet Journal of Nitride Semiconductor Research, 1998, 3, 1.	1.0	17
168	Crystal Morphology and Optical Emissions of GaN layers grown on Si(111) substrates by Molecular Beam Epitaxy. MRS Internet Journal of Nitride Semiconductor Research, 1998, 3, 1.	1.0	5
169	Study of high quality AlN layers grown on $Si(111)$ substrates by plasma-assisted molecular beam epitaxy. MRS Internet Journal of Nitride Semiconductor Research, 1997, 2, 1.	1.0	14
170	Yellow luminescence and related deep states in undoped GaN. Physical Review B, 1997, 55, 4689-4694.	1.1	203
171	Exciton and donor - acceptor recombination in undoped GaN on Si(111). Semiconductor Science and Technology, 1997, 12, 1396-1403.	1.0	53
172	Yellow luminescence in Mg-doped GaN. MRS Internet Journal of Nitride Semiconductor Research, 1997, 2, 1.	1.0	9
173	Influence of the surface morphology on the relaxation of low-strained InxGa1 â^' xAs linear buffer structures. Journal of Crystal Growth, 1997, 182, 281-291.	0.7	14
174	Yellow Band and Deep levels in Undoped MOVPE GaN MRS Internet Journal of Nitride Semiconductor Research, 1996, 1, 1.	1.0	18
175	Optical and electrical characterization of GaN layers grown on silicon and sapphire substrates. Solid-State Electronics, 1996, 40, 81-84.	0.8	2
176	Non-uniform strain relaxation in InxGa1â^'xAs layers. Solid-State Electronics, 1996, 40, 647-651.	0.8	3
177	Strain diagnosis of (001) and (111) InGaAs layers by optical techniques. Physica Status Solidi A, 1995, 152, 201-209.	1.7	18
178	Optical characterization of [111]B InGaAs layers. Microelectronics Journal, 1995, 26, 821-826.	1.1	8
179	Electrical and optical characterization of Mg, Mg/P, and Mg/Ar implants into InP:Fe. Journal of Electronic Materials, 1995, 24, 59-67.	1.0	10
180	A Raman spectroscopic study of the Si, Be, and C incorporation in InxGa1â^xAs relaxed layers. Journal of Applied Physics, 1995, 78, 4690-4695.	1.1	1

#	Article	IF	CITATIONS
181	Conductionâ€band engineering in piezoelectric [111] multiple quantum wellpâ€iâ€nphotodiodes. Applied Physics Letters, 1994, 65, 2214-2216.	1.5	42
182	Influence of In on Si local vibrational modes in InxGa1â^'xAs (0â‰ x â‰ 6 .12). Journal of Applied Physics, 1994, 76, 7797-7804.	1.1	1
183	Relaxation of InGaAs layers grown on (111)B GaAs. Applied Physics Letters, 1994, 65, 3212-3214.	1.5	31
184	Conduction band engineering in InGaAs/GaAs [111] multiple quantum well p-i-n photodiodes. Superlattices and Microstructures, 1993, 14, 287.	1.4	1
185	Incorporation of Be Into In _x Ga _{1-x} As (0.004â‰æâ‰6.17) Studied by Photoluminescence and Resonant Raman Spectroscopy of Local Vibrational Modes. Materials Science Forum, 1993, 143-147, 241-246.	0.3	2
186	Double Raman Resonances in Semiconductor Multiquantum Wells Induced by High Magnetic Fields. , 1993, , 121-130.		0
187	Hot Exciton Luminescence in Quantum Wells as a Spectroscopic Tool. NATO ASI Series Series B: Physics, 1993, , 421-430.	0.2	0
188	Excitonic spectrum of [111] GaAs/GaxAl1â^'xAs quantum wells. Physical Review B, 1992, 46, 13234-13243.	1.1	15
189	Double Raman resonances by light and heavy magneto-excitons in GaAs/AlAs multiquantum wells. Surface Science, 1992, 267, 418-421.	0.8	2
190	Resonance raman scattering in CdTe/CdMnTe superlattices under a magnetic field. Solid State Communications, 1992, 83, 539-543.	0.9	2
191	Resonant Raman scattering in GaAsî—AlAs quantum wells under high magnetic fields. Superlattices and Microstructures, 1991, 10, 217-219.	1.4	5
192	Double Raman resonances induced by a magnetic field in GaAs-AlAs multiple quantum wells. Physical Review B, 1991, 44, 1113-1117.	1.1	19
193	Resonant Raman scattering in [111] GaAs/AlAs short-period superlattices. Physical Review B, 1991, 43, 9152-9157.	1.1	13
194	Resonant Raman Scattering in GaAs-AlAs Multiquantum Wells Under Magnetic Fields. NATO ASI Series Series B: Physics, 1991, , 53-61.	0.2	2
195	Resonant raman scattering in GaAsî—,AlAs coupled double wells. Surface Science, 1990, 228, 176-179.	0.8	1
196	Frequency gaps for folded acoustic phonons in superlattices. Solid State Communications, 1989, 72, 1153-1158.	0.9	21
197	Photoluminescence and electrical characterization of shallow Mg, Mg/Ar and Mg/P implants into InP:Fe. , 0, , .		0
198	AlGaN-based UV detectors and applications. , 0, , .		1

#	Article	IF	CITATIONS
199	Technology and performance of submicron metal-semiconductor-metal GaN ultraviolet detectors. , 0,		O
200	High frequency SAW devices on AlGaN: fabrication, characterization and integration with optoelectronics. , 0, , .		14
201	Voltage controlled SAW filters on 2DEG AlGaN/GaN heterostructures. , 0, , .		6
202	Characterization of schottky contacts on n-GaN at high temperature. , 0, , .		2
203	Gate Oxide Stability of 4H-SiC MOSFETs under On/Off-State Bias-Temperature Stress. Materials Science Forum, 0, 740-742, 553-556.	0.3	5