Serena Ruggieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/137441/publications.pdf Version: 2024-02-01

SEDENA RUCCIERI

#	Article	IF	CITATIONS
1	Increased risk of death from COVID-19 in multiple sclerosis: a pooled analysis of observational studies. Journal of Neurology, 2022, 269, 1114-1120.	1.8	23
2	Performance of the 2017 and 2010 Revised McDonald Criteria in Predicting MS Diagnosis After a Clinically Isolated Syndrome. Neurology, 2022, 98, .	1.5	31
3	Humoral- and T-Cell–Specific Immune Responses to SARS-CoV-2 mRNA Vaccination in Patients With MS Using Different Disease-Modifying Therapies. Neurology, 2022, 98, .	1.5	125
4	Determinants of COVID-19-related lethality in multiple sclerosis: a meta-regression of observational studies. Journal of Neurology, 2022, 269, 2275-2285.	1.8	18
5	Ponesimod in the Treatment of Relapsing Forms of Multiple Sclerosis: An Update on the Emerging Clinical Data. Degenerative Neurological and Neuromuscular Disease, 2022, Volume 12, 61-73.	0.7	8
6	Relation of sensorimotor and cognitive cerebellum functional connectivity with brain structural damage in patients with multiple sclerosis and no disability. European Journal of Neurology, 2022, 29, 2036-2046.	1.7	6
7	Consensus Paper: Ataxic Gait. Cerebellum, 2022, , 1.	1.4	9
8	Shift of multiple sclerosis onset towards older age. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 1137-1139.	0.9	12
9	Humoral and Cellular Response to Spike of Delta SARS-CoV-2 Variant in Vaccinated Patients With Multiple Sclerosis. Frontiers in Neurology, 2022, 13, .	1.1	18
10	Predictors of Cladribine Effectiveness and Safety in Multiple Sclerosis: A Real-World, Multicenter, 2-Year Follow-Up Study. Neurology and Therapy, 2022, 11, 1193-1208.	1.4	17
11	Resting-state functional connectivity of anterior and posterior cerebellar lobes is altered in multiple sclerosis Journal, 2021, 27, 539-548.	1.4	13
12	The role of pontine lesion location in differentiating multiple sclerosis from vascular risk factor-related small vessel disease. Multiple Sclerosis Journal, 2021, 27, 968-972.	1.4	3
13	â€~Posture second' strategy predicts disability progression in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 1140-1144.	1.4	Ο
14	Manual and automated tissue segmentation confirm the impact of thalamus atrophy on cognition in multiple sclerosis: A multicenter study. NeuroImage: Clinical, 2021, 29, 102549.	1.4	20
15	Development and evaluation of a manual segmentation protocol for deep grey matter in multiple sclerosis: Towards accelerated semi-automated references. NeuroImage: Clinical, 2021, 30, 102659.	1.4	3
16	Machine learning classifier to identify clinical and radiological features relevant to disability progression in multiple sclerosis. Journal of Neurology, 2021, 268, 4834-4845.	1.8	16
17	A matter of atrophy: differential impact of brain and spine damage on disability worsening in multiple sclerosis. Journal of Neurology, 2021, 268, 4698-4706.	1.8	11
18	Prognostic Accuracy of NEDA-3 in Long-term Outcomes of Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	27

#	Article	IF	CITATIONS
19	Increased risk of death from COVID-19 in multiple sclerosis: A meta-analysis of observational studies. Journal of the Neurological Sciences, 2021, 429, 117776.	0.3	3
20	Exit strategies for "needle fatigue―in multiple sclerosis: a propensity score-matched comparison study. Journal of Neurology, 2020, 267, 694-702.	1.8	6
21	Premorbid functional reserve modulates the effect of rehabilitation in multiple sclerosis. Neurological Sciences, 2020, 41, 1251-1257.	0.9	18
22	Cognitive fatigability is a quantifiable distinct phenomenon in multiple sclerosis. Journal of Neuropsychology, 2020, 14, 370-383.	0.6	11
23	Cesarean section in women with MS: A choice or a need?. Multiple Sclerosis and Related Disorders, 2020, 38, 101867.	0.9	3
24	EBV-specific CD8 T lymphocytes and B cells during glatiramer acetate therapy in patients with MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e876.	3.1	6
25	Specialized pro-resolving lipid mediators are differentially altered in peripheral blood of patients with multiple sclerosis and attenuate monocyte and blood-brain barrier dysfunction. Haematologica, 2020, 105, 2056-2070.	1.7	70
26	Multi-scale resting state functional reorganization in response to multiple sclerosis damage. Neuroradiology, 2020, 62, 693-704.	1.1	13
27	Induction Versus Escalation in Multiple Sclerosis: A 10-Year Real World Study. Neurotherapeutics, 2020, 17, 994-1004.	2.1	34
28	A Comprehensive Approach to Disentangle the Effect of Cerebellar Damage on Physical Disability in Multiple Sclerosis. Frontiers in Neurology, 2020, 11, 529.	1.1	11
29	Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort. Journal of Neurology, 2020, 267, 3541-3554.	1.8	14
30	Distinct influence of different vascular risk factors on white matter brain lesions in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 388-391.	0.9	14
31	Minimal evidence of disease activity (MEDA) in relapsing-remitting multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 271-277.	0.9	29
32	Longitudinal Assessment of Multiple Sclerosis with the Brainâ€Age Paradigm. Annals of Neurology, 2020, 88, 93-105.	2.8	79
33	MRI quality control for the Italian Neuroimaging Network Initiative: moving towards big data in multiple sclerosis. Journal of Neurology, 2019, 266, 2848-2858.	1.8	16
34	Lifespan normative data on rates of brain volume changes. Neurobiology of Aging, 2019, 81, 30-37.	1.5	40
35	CD28 Autonomous Signaling Up-Regulates C-Myc Expression and Promotes Glycolysis Enabling Inflammatory T Cell Responses in Multiple Sclerosis. Cells, 2019, 8, 575.	1.8	30
36	Distinct Expression of Inflammatory Features in T Helper 17 Cells from Multiple Sclerosis Patients. Cells, 2019, 8, 533.	1.8	14

3

#	Article	IF	CITATIONS
37	Resiquimod-Mediated Activation of Plasmacytoid Dendritic Cells Is Amplified in Multiple Sclerosis. International Journal of Molecular Sciences, 2019, 20, 2811.	1.8	3
38	Advances in spinal cord imaging in multiple sclerosis. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641984059.	1.5	69
39	Impact of 3 Tesla MRI on interobserver agreement in clinically isolated syndrome: A MAGNIMS multicentre study. Multiple Sclerosis Journal, 2019, 25, 352-360.	1.4	22
40	Tumefactive Demyelinating Lesions and Pregnancy. Neurology India, 2019, 67, 1519.	0.2	0
41	FoxP3 isoforms and PD-1 expression by T regulatory cells in multiple sclerosis. Scientific Reports, 2018, 8, 3674.	1.6	42
42	Butyrylcholinesterase and Acetylcholinesterase polymorphisms in Multiple Sclerosis patients: implication in peripheral inflammation. Scientific Reports, 2018, 8, 1319.	1.6	41
43	Prediction of a multiple sclerosis diagnosis in patients with clinically isolated syndrome using the 2016 MAGNIMS and 2010 McDonald criteria: a retrospective study. Lancet Neurology, The, 2018, 17, 133-142.	4.9	98
44	Deep gray matter volume loss drives disability worsening in multiple sclerosis. Annals of Neurology, 2018, 83, 210-222.	2.8	295
45	<i>Listeria monocytogenes</i> –Induced Rhombencephalitis in a Patient With Multiple Sclerosis Treated With Dimethyl Fumarate. JAMA Neurology, 2018, 75, 762.	4.5	10
46	Lesion symptom map of cognitive–postural interference in multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 653-662.	1.4	21
47	<i>Listeria Monocytogenes</i> –Induced Rhombencephalitis—A Paradoxical Disease of Immunocompetent Patients—Reply. JAMA Neurology, 2018, 75, 1442.	4.5	Ο
48	No evidence of disease activity (NEDA-3) and disability improvement after alemtuzumab treatment for multiple sclerosis: a 36-month real-world study. Journal of Neurology, 2018, 265, 2851-2860.	1.8	43
49	Relation between functional connectivity and disability in multiple sclerosis: a non-linear model. Journal of Neurology, 2018, 265, 2881-2892.	1.8	21
50	Progression of regional grey matter atrophy in multiple sclerosis. Brain, 2018, 141, 1665-1677.	3.7	269
51	Nanovesicles from adipose-derived mesenchymal stem cells inhibit T lymphocyte trafficking and ameliorate chronic experimental autoimmune encephalomyelitis. Scientific Reports, 2018, 8, 7473.	1.6	61
52	Induction treatment strategy in multiple sclerosis: a review of past experiences and future perspectives. Multiple Sclerosis and Demyelinating Disorders, 2018, 3, .	1.1	20
53	Fingolimod vs dimethyl fumarate in multiple sclerosis. Neurology, 2018, 91, e153-e161.	1.5	35
54	The Italian Neuroimaging Network Initiative (INNI): enabling the use of advanced MRI techniques in patients with MS. Neurological Sciences, 2017, 38, 1029-1038.	0.9	14

#	Article	IF	CITATIONS
55	Anti lingo 1 (opicinumab) a new monoclonal antibody tested in relapsing remitting multiple sclerosis. Expert Review of Neurotherapeutics, 2017, 17, 1081-1089.	1.4	20
56	Serum Compounds of Energy Metabolism Impairment Are Related to Disability, Disease Course and Neuroimaging in Multiple Sclerosis. Molecular Neurobiology, 2017, 54, 7520-7533.	1.9	47
57	Real-world effectiveness of natalizumab and fingolimod compared with self-injectable drugs in non-responders and in treatment-naÃ ⁻ ve patients with multiple sclerosis. Journal of Neurology, 2017, 264, 284-294.	1.8	44
58	Modulation of P2X7 Receptor during Inflammation in Multiple Sclerosis. Frontiers in Immunology, 2017, 8, 1529.	2.2	53
59	Dysregulated Homeostasis of Acetylcholine Levels in Immune Cells of RR-Multiple Sclerosis Patients. International Journal of Molecular Sciences, 2016, 17, 2009.	1.8	25
60	T helper 9 cells induced by plasmacytoid dendritic cells regulate interleukin-17Âin multiple sclerosis. Clinical Science, 2015, 129, 291-303.	1.8	55
61	FAS-ligand regulates differential activation-induced cell death of human T-helper 1 and 17 cells in healthy donors and multiple sclerosis patients. Cell Death and Disease, 2015, 6, e1741-e1741.	2.7	28
62	Association of Deep Gray Matter Damage With Cortical and Spinal Cord Degeneration in Primary Progressive Multiple Sclerosis. JAMA Neurology, 2015, 72, 1466.	4.5	32
63	Pharmacology and clinical efficacy of dimethyl fumarate (BG-12) for treatment of relapsing–remitting multiple sclerosis. Therapeutics and Clinical Risk Management, 2014, 10, 229.	0.9	43
64	Magnetic resonance imaging correlates of physical disability in relapse onset multiple sclerosis of long disease duration. Multiple Sclerosis Journal, 2014, 20, 72-80.	1.4	95
65	Natalizumab Treatment in Multiple Sclerosis Patients: A Multicenter Experience in Clinical Practice in Italy. International Journal of Immunopathology and Pharmacology, 2014, 27, 147-154.	1.0	23
66	CD28 ligation in the absence of TCR stimulation up-regulates IL-17A and pro-inflammatory cytokines in relapsing-remitting multiple sclerosis T lymphocytes. Immunology Letters, 2014, 158, 134-142.	1.1	36
67	Plasmacytoid dendritic cells induce an immunoregulatory T helper 9 profile in multiple sclerosis. Journal of Neuroimmunology, 2014, 275, 207-208.	1.1	0
68	ls there a correlation between CD39+CD25+ T lymphocytes and Foxp3 isoforms in Multiple Sclerosis?. Journal of Neuroimmunology, 2014, 275, 208.	1.1	1
69	Drugs in clinical development for multiple sclerosis: focusing on anti-CD20 antibodies. Expert Opinion on Investigational Drugs, 2013, 22, 1243-1253.	1.9	10
70	Increased CD8+ T Cell Response to Epstein-Barr Virus Lytic Antigens in the Active Phase of Multiple Sclerosis. PLoS Pathogens, 2013, 9, e1003220.	2.1	132
71	Efficacy and safety of laquinimod in multiple sclerosis: current status. Therapeutic Advances in Neurological Disorders, 2013, 6, 343-352.	1.5	18
72	Advances in the treatment of relapsing–remitting multiple sclerosis – critical appraisal of fingolimod. Therapeutics and Clinical Risk Management, 2013, 9, 73.	0.9	15

#	Article	IF	CITATIONS
73	New challenges in multiple sclerosis: are oral drugs translatable into the clinic?. Neurodegenerative Disease Management, 2012, 2, 339-342.	1.2	0
74	Development of oral agent in the treatment of multiple sclerosis: how the first available oral therapy, Fingolimod will change therapeutic paradigm approach. Drug Design, Development and Therapy, 2012, 6, 175.	2.0	38
75	Emerging oral drugs for relapsing–remitting multiple sclerosis. Expert Opinion on Emerging Drugs, 2011, 16, 697-712.	1.0	13
76	Pronounced focal and diffuse brain damage predicts short-term disease evolution in patients with clinically isolated syndrome suggestive of multiple sclerosis. Multiple Sclerosis Journal, 2011, 17, 1432-1440.	1.4	22
77	Emerging oral treatments in multiple sclerosis – clinical utility of cladribine tablets. Therapeutics and Clinical Risk Management, 2010, 6, 391.	0.9	6
78	New oral drugs for multiple sclerosis. Neurological Sciences, 2009, 30, 179-183.	0.9	49