Walter Wilczynski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1374328/publications.pdf

Version: 2024-02-01

126907 149698 3,180 65 33 56 citations g-index h-index papers 66 66 66 1683 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature, 1990, 343, 66-67.	27.8	612
2	Auditory Tuning and Call Frequency Predict Population-Based Mating Preferences in the Cricket Frog, Acris crepitans. American Naturalist, 1992, 139, 1370-1383.	2.1	148
3	Evolution of intraspecific variation in the advertisement call of a cricket frog (Acris crepitans,) Tj ETQq $1\ 1\ 0.7843$	14 rgBT /C	Overlock 10 T
4	Plasticity in female mate choice associated with changing reproductive states. Animal Behaviour, 2005, 69, 689-699.	1.9	129
5	Hormonal state influences aspects of female mate choice in the Túngara Frog (Physalaemus) Tj ETQq1 1 0.7843	14.rgBT /0	Overlock 10 T
6	Current research in amphibians: Studies integrating endocrinology, behavior, and neurobiology. Hormones and Behavior, 2005, 48, 440-450.	2.1	104
7	THE ROLE OF ENVIRONMENTAL SELECTION IN INTRASPECIFIC DIVERGENCE OF MATE RECOGNITION SIGNALS IN THE CRICKET FROG, <i>ACRIS CREPITANS</i> . Evolution; International Journal of Organic Evolution, 1990, 44, 1869-1872.	2.3	101
8	The processing of spectral cues by the call analysis system of the túngara frog,Physalaemus pustulosus. Animal Behaviour, 1995, 49, 911-929.	1.9	85
9	Functional Mapping of the Auditory Midbrain during Mate Call Reception. Journal of Neuroscience, 2004, 24, 11264-11272.	3.6	83
10	Social Signals Influence Hormones Independently of Calling Behavior in the Treefrog (Hyla cinerea). Hormones and Behavior, 2000, 38, 201-209.	2.1	80
11	Acoustic communication in spring peepers. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1984, 155, 585-592.	1.6	69
12	Gonadal steroids vary with reproductive stage in a tropically breeding female anuran. General and Comparative Endocrinology, 2005, 143, 51-56.	1.8	69
13	The Effects of Arginine Vasotocin on the Calling Behavior of Male Cricket Frogs in Changing Social Contexts. Hormones and Behavior, 1998, 34, 248-261.	2.1	68
14	Social cues shift functional connectivity in the hypothalamus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10712-10717.	7.1	68
15	Social regulation of plasma estradiol concentration in a female anuran. Hormones and Behavior, 2006, 50, 101-106.	2.1	68
16	Information transfer during cricket frog contests. Animal Behaviour, 2002, 64, 715-725.	1.9	57
17	Reproductive Hormones Modify Reception of Species-Typical Communication Signals in a Female Anuran. Brain, Behavior and Evolution, 2008, 71, 143-150.	1.7	56
18	The behavioral neuroscience of anuran social signal processing. Current Opinion in Neurobiology, 2010, 20, 754-763.	4.2	56

#	Article	IF	Citations
19	Social Signals Regulate Gonadotropin-Releasing Hormone Neurons in the Green Treefrog. Brain, Behavior and Evolution, 2005, 65, 26-32.	1.7	56
20	Social Context Influences Androgenic Effects on Calling in the Green Treefrog (Hyla cinerea). Hormones and Behavior, 2001, 40, 550-558.	2.1	49
21	Candidate neural locus for sex differences in reproductive decisions. Biology Letters, 2008, 4, 518-521.	2.3	47
22	Female reproductive state influences the auditory midbrain response. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 341-349.	1.6	47
23	Sex differences and androgen influences on midbrain auditory thresholds in the green treefrog, Hyla cinerea. Hearing Research, 2009, 252, 79-88.	2.0	46
24	Female preferences for temporal order of call components in the $t\tilde{A}^{\varrho}$ ngara frog: a Bayesian analysis. Animal Behaviour, 1999, 58, 841-851.	1.9	45
25	Integration of sensory and motor processing underlying social behaviour in túngara frogs. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 641-649.	2.6	44
26	Female sexual arousal in amphibians. Hormones and Behavior, 2011, 59, 630-636.	2.1	43
27	Social Influences on Androgen Levels in the Southern Leopard Frog, Rana sphenocephala. General and Comparative Endocrinology, 2001, 121, 66-73.	1.8	39
28	Acoustic Modulation of Neural Activity in the Hypothalamus of the Leopard Frog. Brain, Behavior and Evolution, 1989, 33, 317-324.	1.7	38
29	The Effects of Social Experience on Aggressive Behavior in the Green Anole Lizard (<i>Anolis) Tj ETQq1 1 0.7843</i>	14 _{fg} BT/C	veglock 10 T
30	Arginine Vasotocin, the Social Neuropeptide of Amphibians and Reptiles. Frontiers in Endocrinology, 2017, 8, 186.	3.5	37
31	Relationships between Hormones and Aggressive Behavior in Green Anole Lizards: An Analysis Using Structural Equation Modeling. Hormones and Behavior, 2002, 42, 192-205.	2.1	36
32	Sexual dimorphism and species differences in the neurophysiology and morphology of the acoustic communication system of two neotropical hylids. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1997, 180, 451-462.	1.6	35
33	Interaction effects of corticosterone and experience on aggressive behavior in the green anole lizard. Hormones and Behavior, 2003, 44, 281-292.	2.1	35
34	Sexually dimorphic sensory gating drives behavioral differences in túngara frogs. Journal of Experimental Biology, 2010, 213, 3463-3472.	1.7	32
35	Temporal call changes and prior experience affect graded signalling in the cricket frog. Animal Behaviour, 1999, 57, 611-618.	1.9	29
36	Dominance status predicts response to nonsocial forced movement stress in the green anole lizard (Anolis carolinensis). Physiology and Behavior, 2004, 80, 547-555.	2.1	29

3

#	Article	IF	CITATIONS
37	Sex differences and hormone influences on tyrosine hydroxylase immunoreactive cells in the leopard frog. Journal of Neurobiology, 2003, 56, 54-65.	3.6	25
38	The Display of the Blueâ€black Grassquit: The Acoustic Advantage of Getting High. Ethology, 1989, 80, 218-222.	1.1	25
39	Sexually dimorphic laryngeal morphology inRana pipiens. Journal of Morphology, 1989, 201, 293-299.	1.2	23
40	Anticholinergic effects in frogs in a Morris water maze analog. Physiology and Behavior, 2000, 69, 351-357.	2.1	23
41	Social experience organizes parallel networks in sensory and limbic forebrain. Developmental Neurobiology, 2007, 67, 285-303.	3.0	23
42	Agonistic Encounters in a Cricket Frog (Acris crepitans) Chorus: Behavioral Outcomes Vary with Local Competition and within the Breeding Season. Ethology, 1999, 105, 335-347.	1.1	21
43	Arginine vasotocin, steroid hormones, and social behavior in the green anole lizard, <i>Anolis carolinensis</i> . Journal of Experimental Biology, 2014, 217, 3670-6.	1.7	20
44	Changes in Plasma Testosterone Levels and Brain AVT Cell Number during the Breeding Season in the Green Treefrog. Brain, Behavior and Evolution, 2010, 75, 271-281.	1.7	19
45	Hearing conspecific vocal signals alters peripheral auditory sensitivity. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150749.	2.6	19
46	Sex-Specific Modulation of Cell Proliferation by Socially Relevant Stimuli in the Adult Green Treefrog Brain <i>(Hyla cinerea)</i>). Brain, Behavior and Evolution, 2009, 74, 143-154.	1.7	17
47	Behavioural persistence during an agonistic encounter differentiates winners from losers in green anole lizards. Behaviour, 2015, 152, 563-591.	0.8	16
48	Functional coupling between substantia nigra and basal ganglia homologues in amphibians Behavioral Neuroscience, 2007, 121, 1393-1399.	1.2	15
49	Prior experience with conspecific signals enhances auditory midbrain responsiveness to conspecific vocalizations. Journal of Experimental Biology, 2014, 217, 1977-1982.	1.7	13
50	Biological Rhythms: Melatonin Shapes the Space–Time Continuum of Social Communication. Current Biology, 2016, 26, R892-R895.	3.9	12
51	High-frequency vocalizations in Andean hummingbirds. Current Biology, 2018, 28, R927-R928.	3.9	12
52	Arginine vasotocin impacts chemosensory behavior during social interactions of Anolis carolinensis lizards. Hormones and Behavior, 2020, 124, 104772.	2.1	9
53	Apomorphine effects on frog locomotor behavior. Physiology and Behavior, 2007, 91, 71-76.	2.1	8
54	Socially Modulated Cell Proliferation Is Independent of Gonadal Steroid Hormones in the Brain of the Adult Green Treefrog <i>(Hyla cinerea)</i> . Brain, Behavior and Evolution, 2012, 79, 170-180.	1.7	8

#	Article	IF	CITATIONS
55	Differences in forebrain androgen receptor expression in winners and losers of male anole aggressive interactions. Brain Research, 2014, 1582, 45-54.	2.2	8
56	Influence of dopamine D2-type receptors on motor behaviors in the green tree frog, Hyla cinerea. Physiology and Behavior, 2014, 127, 71-80.	2.1	7
57	Behavioral and neural auditory thresholds in a frog. Environmental Epigenetics, 2019, 65, 333-341.	1.8	7
58	Responses of male cricket frogs (<i>Acris crepitans</i>) to attenuated and degraded advertisement calls. Ethology, 2017, 123, 357-364.	1.1	6
59	Effects of Steroid Hormones on Hearing and Communication in Frogs. Springer Handbook of Auditory Research, 2016, , 53-75.	0.7	4
60	The effects of call-like masking diminish after nightly exposure to conspecific choruses in green treefrogs (Hyla cinerea). Journal of Experimental Biology, 2016, 219, 1295-302.	1.7	3
61	Does sexual dimorphism vary by population? Laryngeal and ear anatomy in cricket frogs. Environmental Epigenetics, 2019, 65, 343-352.	1.8	2
62	The parcellation theory: What does the evidence tell us?. Behavioral and Brain Sciences, 1984, 7, 348-349.	0.7	1
63	Evolutionary events and the "modification/multiplication―relationship. Behavioral and Brain Sciences, 1988, 11, 103-104.	0.7	O
64	Brain allometry: Correlated variation in cytoarchitectonics and neurochemistry?. Behavioral and Brain Sciences, 2001, 24, 297-298.	0.7	0
65	Neuroendocrine Control of Social Behavior in Frogs. , 2017, , 101-116.		O