GÃ;bor PÃ;l

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1374171/publications.pdf Version: 2024-02-01

CÃ:ROP PÃ:

#	Article	IF	CITATIONS
1	Directed Evolution-Driven Increase of Structural Plasticity Is a Prerequisite for Binding the Complement Lectin Pathway Blocking MASP-Inhibitor Peptides. ACS Chemical Biology, 2022, , .	1.6	1
2	Synergy of protease-binding sites within the ecotin homodimer is crucial for inhibition of MASP enzymes and for blocking lectin pathway activation. Journal of Biological Chemistry, 2022, 298, 101985.	1.6	4
3	Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1–associated membranous nephropathy. Journal of Clinical Investigation, 2021, 131, .	3.9	94
4	Proprotein Convertase Is the Highest-Level Activator of the Alternative Complement Pathway in the Blood. Journal of Immunology, 2021, 206, 2198-2205.	0.4	12
5	MASP-1 of the complement system alters fibrinolytic behaviour of blood clots. Molecular Immunology, 2019, 114, 1-9.	1.0	12
6	MASP-1 Increases Endothelial Permeability. Frontiers in Immunology, 2019, 10, 991.	2.2	23
7	Novel MASP-2 inhibitors developed via directed evolution of human TFPI1 are potent lectin pathway inhibitors. Journal of Biological Chemistry, 2019, 294, 8227-8237.	1.6	11
8	Comment on "Cutting Edge: Role of MASP-3 in the Physiological Activation of Factor D of the Alternative Complement Pathway― Journal of Immunology, 2019, 203, 3091.1-3091.	0.4	2
9	Ecotin, a microbial inhibitor of serine proteases, blocks multiple complement dependent and independent microbicidal activities of human serum. PLoS Pathogens, 2019, 15, e1008232.	2.1	24
10	Directed Evolution of Canonical Loops and Their Swapping between Unrelated Serine Proteinase Inhibitors Disprove the Interscaffolding Additivity Model. Journal of Molecular Biology, 2019, 431, 557-575.	2.0	11
11	Cutting Edge: A New Player in the Alternative Complement Pathway, MASP-1 Is Essential for LPS-Induced, but Not for Zymosan-Induced, Alternative Pathway Activation. Journal of Immunology, 2018, 200, 2247-2252.	0.4	25
12	MASP-1 of the complement system enhances clot formation in a microvascular whole blood flow model. PLoS ONE, 2018, 13, e0191292.	1.1	31
13	Overlapping Specificity of Duplicated Human Pancreatic Elastase 3 Isoforms and Archetypal Porcine Elastase 1 Provides Clues to Evolution of Digestive Enzymes. Journal of Biological Chemistry, 2017, 292, 2690-2702.	1.6	12
14	Novel linear motif filtering protocol reveals the role of the LC8 dynein light chain in the Hippo pathway. PLoS Computational Biology, 2017, 13, e1005885.	1.5	20
15	Structural determinants governing S100A4â€induced isoformâ€selective disassembly of nonmuscle myosin <scp>II</scp> filaments. FEBS Journal, 2016, 283, 2164-2180.	2.2	13
16	Cholesterol Crystals Activate the Lectin Complement Pathway via Ficolin-2 and Mannose-Binding Lectin: Implications for the Progression of Atherosclerosis. Journal of Immunology, 2016, 196, 5064-5074.	0.4	35
17	Cholesterol crystals activate the lectin complement pathway via ficolin-2 and MBL $\hat{a} \in$ Implications for the progression of atherosclerosis. Immunobiology, 2016, 221, 1138.	0.8	0
18	The emerging roles of mannoseâ€binding lectinâ€associated serine proteases (<scp>MASP</scp> s) in the lectin pathway of complement and beyond. Immunological Reviews, 2016, 274, 98-111.	2.8	85

GÃibor PÃil

#	Article	IF	CITATIONS
19	MASP-3 is the exclusive pro-factor D activator in resting blood: the lectin and the alternative complement pathways are fundamentally linked. Scientific Reports, 2016, 6, 31877.	1.6	108
20	MASP-1 and MASP-2 Do Not Activate Pro–Factor D in Resting Human Blood, whereas MASP-3 Is a Potential Activator: Kinetic Analysis Involving Specific MASP-1 and MASP-2 Inhibitors. Journal of Immunology, 2016, 196, 857-865.	0.4	47
21	Methods for the Construction of Phage-Displayed Libraries. Drug Discovery Series, 2015, , 75-96.	0.1	1
22	Inhibition of the Serine Proteases of the Complement System. Advances in Experimental Medicine and Biology, 2013, 735, 23-40.	0.8	18
23	Quantitative Characterization of the Activation Steps of Mannan-binding Lectin (MBL)-associated Serine Proteases (MASPs) Points to the Central Role of MASP-1 in the Initiation of the Complement Lectin Pathway. Journal of Biological Chemistry, 2013, 288, 8922-8934.	1.6	64
24	Mapping Hidden Potential Identity Elements by Computing the Average Discriminating Power of Individual tRNA Positions. DNA Research, 2012, 19, 245-258.	1.5	5
25	Revised mechanism of complement lectin-pathway activation revealing the role of serine protease MASP-1 as the exclusive activator of MASP-2. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10498-10503.	3.3	196
26	Monospecific Inhibitors Show That Both Mannan-binding Lectin-associated Serine Protease-1 (MASP-1) and -2 Are Essential for Lectin Pathway Activation and Reveal Structural Plasticity of MASP-2. Journal of Biological Chemistry, 2012, 287, 20290-20300.	1.6	69
27	The Catalytic Aspartate Is Protonated in the Michaelis Complex Formed between Trypsin and an in Vitro Evolved Substrate-like Inhibitor. Journal of Biological Chemistry, 2011, 286, 3587-3596.	1.6	23
28	Directed Evolution Reveals the Binding Motif Preference of the LC8/DYNLL Hub Protein and Predicts Large Numbers of Novel Binders in the Human Proteome. PLoS ONE, 2011, 6, e18818.	1.1	57
29	DYNLL/LC8: a light chain subunit of the dynein motor complex and beyond. FEBS Journal, 2011, 278, 2980-2996.	2.2	116
30	High Affinity Small Protein Inhibitors of Human Chymotrypsin C (CTRC) Selected by Phage Display Reveal Unusual Preference for P4′ Acidic Residues. Journal of Biological Chemistry, 2011, 286, 22535-22545.	1.6	30
31	Selective Inhibition of the Lectin Pathway of Complement with Phage Display Selected Peptides against Mannose-Binding Lectin-Associated Serine Protease (MASP)-1 and -2: Significant Contribution of MASP-1 to Lectin Pathway Activation. Journal of Immunology, 2010, 185, 4169-4178.	0.4	69
32	A redesigned genetic code for selective labeling in protein NMR. BioEssays, 2008, 30, 772-780.	1.2	3
33	In silico detection of tRNA sequence features characteristic to aminoacyl-tRNA synthetase class membership. Nucleic Acids Research, 2007, 35, 5593-5609.	6.5	19
34	When the Surface Tells What Lies Beneath: Combinatorial Phage-display Mutagenesis Reveals Complex Networks of Surface–Core Interactions in the Pacifastin Protease Inhibitor Family. Journal of Molecular Biology, 2007, 370, 63-79.	2.0	20
35	Comprehensive and Quantitative Mapping of Energy Landscapes for Protein-Protein Interactions by Rapid Combinatorial Scanning. Journal of Biological Chemistry, 2006, 281, 22378-22385.	1.6	112
36	Alternative views of functional protein binding epitopes obtained by combinatorial shotgun scanning mutagenesis. Protein Science, 2005, 14, 2405-2413.	3.1	34

GÃibor PÃil

#	Article	IF	CITATIONS
37	Shotgun Alanine Scanning Shows That Growth Hormone Can Bind Productivelyto Its Receptor through a Drastically MinimizedInterface. Journal of Biological Chemistry, 2005, 280, 25524-25532.	1.6	38
38	Intramolecular Cooperativity in a Protein Binding Site Assessed by Combinatorial Shotgun Scanning Mutagenesis. Journal of Molecular Biology, 2005, 347, 489-494.	2.0	26
39	Mutant rat trypsin selectively cleaves tyrosyl peptide bonds. Analytical Biochemistry, 2004, 326, 190-199.	1.1	1
40	Reexamination of the recognition preference of the specificity pocket of the Abl SH3 domain. Journal of Molecular Recognition, 2003, 16, 131-138.	1.1	4
41	The Functional Binding Epitope of a High Affinity Variant of Human Growth Hormone Mapped by Shotgun Alanine-scanning Mutagenesis: Insights into the Mechanisms Responsible for Improved Affinity. Journal of Molecular Biology, 2003, 332, 195-204.	2.0	42
42	The first semi-synthetic serine protease made by native chemical ligation. Protein Expression and Purification, 2003, 29, 185-192.	0.6	10
43	Determination of the energetics governing the regulatory step in growth hormone-induced receptor homodimerization. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 952-957.	3.3	48
44	Human Cationic Trypsinogen. Journal of Biological Chemistry, 2002, 277, 6111-6117.	1.6	60
45	Functional Promiscuity of Squirrel Monkey Growth Hormone Receptor Toward both Primate and Nonprimate Growth Hormones. Molecular Biology and Evolution, 2002, 19, 1083-1092.	3.5	27
46	Specificity Assay of Serine Proteinases by Reverse-Phase High-Performance Liquid Chromatography Analysis of Competing Oligopeptide Substrate Library. Analytical Biochemistry, 2001, 288, 156-167.	1.1	33
47	Proteinase inhibitors from desert locust, Schistocerca gregaria: engineering of both P1 and P1′ residues converts a potent chymotrypsin inhibitor to a potent trypsin inhibitor. BBA - Proteins and Proteomics, 1999, 1434, 143-150.	2.1	43
48	Affinity Purification of Recombinant Trypsinogen Using Immobilized Ecotin. Protein Expression and Purification, 1998, 12, 291-294.	0.6	44
49	Two Mutations in Rat Trypsin Confer Resistance against Autolysis. Biochemical and Biophysical Research Communications, 1998, 243, 56-60.	1.0	105
50	Stable monomeric form of an originally dimeric serine proteinase inhibitor, ecotin, was constructed via site directed mutagenesis. FEBS Letters, 1996, 385, 165-170.	1.3	21
51	Alteration of the specificity of ecotin, anE. coliserine proteinase inhibitor, by site directed mutagenesis. FEBS Letters, 1994, 342, 57-60.	1.3	23