Ming Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/137410/publications.pdf

Version: 2024-02-01

36	959	17 h-index	30
papers	citations		g-index
37	37	37	1064
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy, 2017, 41, 35-42.	8.2	132
2	Touchpoint-Tailored Ultrasensitive Piezoresistive Pressure Sensors with a Broad Dynamic Response Range and Low Detection Limit. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2551-2558.	4.0	108
3	Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing. Nature Communications, 2021, 12, 1416.	5.8	68
4	Singleâ€Crystal SnSe Thermoelectric Fibers via Laserâ€Induced Directional Crystallization: From 1D Fibers to Multidimensional Fabrics. Advanced Materials, 2020, 32, e2002702.	11.1	57
5	Ordered and Atomically Perfect Fragmentation of Layered Transition Metal Dichalcogenides <i>via</i> Mechanical Instabilities. ACS Nano, 2017, 11, 9191-9199.	7.3	53
6	Highly Oriented Electrospun P(VDFâ€TrFE) Fibers via Mechanical Stretching for Wearable Motion Sensing. Advanced Materials Technologies, 2018, 3, 1800033.	3.0	46
7	Crack-Across-Pore Enabled High-Performance Flexible Pressure Sensors for Deep Neural Network Enhanced Sensing and Human Action Recognition. ACS Nano, 2022, 16, 8358-8369.	7.3	46
8	Controlled Fragmentation of Single-Atom-Thick Polycrystalline Graphene. Matter, 2020, 2, 666-679.	5.0	45
9	Flexible Piezoelectric Fibers for Acoustic Sensing and Positioning. Advanced Electronic Materials, 2017, 3, 1600449.	2.6	44
10	High-performance zero-standby-power-consumption-under-bending pressure sensors for artificial reflex arc. Nano Energy, 2020, 73, 104743.	8.2	40
11	Large-scale synthesis of single-crystalline self-standing SnSe ₂ nanoplate arrays for wearable gas sensors. Nanotechnology, 2018, 29, 455501.	1.3	37
12	Hierarchical Network Enabled Flexible Textile Pressure Sensor with Ultrabroad Response Range and High‶emperature Resistance. Advanced Science, 2022, 9, e2105738.	5.6	37
13	Tunable 3D light trapping architectures based on self-assembled SnSe ₂ nanoplate arrays for ultrasensitive SERS detection. Journal of Materials Chemistry C, 2019, 7, 10179-10186.	2.7	36
14	Highly Sensitive and Wide Linear-Response Pressure Sensors Featuring Zero Standby Power Consumption under Bending Conditions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19563-19571.	4.0	30
15	Laserâ€Induced Inâ€Fiber Fluid Dynamical Instabilities for Precise and Scalable Fabrication of Spherical Particles. Advanced Functional Materials, 2017, 27, 1703245.	7.8	29
16	Flexible and High Performance Piezoresistive Pressure Sensors Based on Hierarchical Flower-Shaped SnSe ₂ Nanoplates. ACS Applied Energy Materials, 2019, 2, 2803-2809.	2.5	25
17	Co-axial silicon/perovskite heterojunction arrays for high-performance direct-conversion pixelated X-ray detectors. Nano Energy, 2020, 78, 105335.	8.2	22
18	Formation of ultra-flexible, conformal, and nano-patterned photonic surfaces <i>via </i> polymer cold-drawing. Journal of Materials Chemistry C, 2018, 6, 4649-4657.	2.7	17

#	Article	IF	CITATIONS
19	Twin Photonic Hooks Generated by Twin-Ellipse Microcylinder. IEEE Photonics Journal, 2020, 12, 1-9.	1.0	15
20	Enabling Low-Temperature Deposition of High-Efficiency CIGS Solar Cells with a Modified Three-Stage Co-Evaporation Process. ACS Applied Energy Materials, 2020, 3, 4201-4207.	2.5	11
21	Waferâ€Scale Growth of Verticalâ€Structured SnSe ₂ Nanosheets for Highly Sensitive, Fastâ€Response UV–Vis–NIR Broadband Photodetectors. Advanced Optical Materials, 2022, 10, .	3.6	10
22	High efficiency CIGS solar cells on flexible stainless steel substrate with SiO2 diffusion barrier layer. Solar Energy, 2021, 230, 1033-1039.	2.9	9
23	Influence of alkali element post-deposition treatment on the performance of the CIGS solar cells on flexible stainless steel substrates. Materials Letters, 2021, 302, 130410.	1.3	8
24	Integrated liquid crystal photonic bandgap fiber devices. Frontiers of Optoelectronics, 2016, 9, 466-482.	1.9	6
25	Recent Advances and Prospects of Fiberâ€Shaped Rechargeable Aqueous Alkaline Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100060.	2.8	5
26	Toward High-Efficiency Cu(In,Ga)(S,Se) ₂ Solar Cells by a Simultaneous Selenization and Sulfurization Rapid Thermal Process. ACS Applied Energy Materials, 2021, 4, 14546-14553.	2.5	5
27	Structure, charge transfer, and superconductivity of M-doped phenanthrene (M = Al, Ga, and In): A comparative study of K-doped cases. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	4
28	Selenium Vacancies and Synergistic Effect of Near- and Far-Field-Enabled Ultrasensitive Surface-Enhanced Raman-Scattering-Active Substrates for Malaria Detection. Journal of Physical Chemistry Letters, 2022, 13, 1453-1463.	2.1	4
29	High-performance x-ray source based on graphene oxide-coated Cu2S nanowires grown on copper film. Nanotechnology, 2020, 31, 485202.	1.3	3
30	lonic migration induced loss analysis of perovskite solar cells: a poling study. Physical Chemistry Chemical Physics, 2022, 24, 7805-7814.	1.3	3
31	A novel energy-resolved radiation detector based on the optimized CIGS photoelectric absorption layer. Journal of Power Sources, 2022, 536, 231520.	4.0	2
32	Optimization of the substrate temperature of narrow bandgap CIS solar cells by three stage coevaporation process. Materials Science in Semiconductor Processing, 2022, 149, 106879.	1.9	2
33	On convolution model for ultrasound echo signal processing. , 2012, , .		0
34	Particles: Laserâ€Induced Inâ€Fiber Fluid Dynamical Instabilities for Precise and Scalable Fabrication of Spherical Particles (Adv. Funct. Mater. 43/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
35	An Iterative Constrained Least Squares Filter for Ultrasound Image Deconvolution. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
36	Modeling and Identification of practical ultrasound transducers in ultrasound imaging systems. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0