Seung Joon Baek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1373200/publications.pdf

Version: 2024-02-01

44444 58552 8,197 143 50 86 citations g-index h-index papers 145 145 145 10390 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Nanoencapsulation of apigenin with whey protein isolate: Physicochemical properties, in vitro activity against colorectal cancer cells, and bioavailability. LWT - Food Science and Technology, 2022, 154, 112751.	2.5	17
2	<i>In vitro</i> antibacterial and antibiofilm effects of cold atmospheric microwave plasma against <i>Pseudomonas aeruginosa</i> causing canine skin and ear infections. Veterinary Dermatology, 2022, 33, 29.	0.4	6
3	In vitro antifungal activity of cold atmospheric microwave plasma and synergistic activity against <i>Malassezia pachydermatis</i> when combined with chlorhexidine gluconate. Veterinary Medicine and Science, 2022, 8, 524-529.	0.6	3
4	Trans-chalcone suppresses tumor growth mediated at least in part by the induction of heme oxygenase-1 in breast cancer. Toxicological Research, 2021, 37, 485-493.	1.1	9
5	DIM-C-pPhtBu induces lysosomal dysfunction and unfolded protein response - mediated cell death via excessive mitophagy. Cancer Letters, 2021, 504, 23-36.	3.2	8
6	Natural Products in the Prevention of Metabolic Diseases: Lessons Learned from the 20th KAST Frontier Scientists Workshop. Nutrients, 2021, 13, 1881.	1.7	4
7	Quercetin Induces Anticancer Activity by Upregulating Pro-NAG-1/GDF15 in Differentiated Thyroid Cancer Cells. Cancers, 2021, 13, 3022.	1.7	25
8	The anti-diabetic effects of NAG-1/GDF15 on HFD/STZ-induced mice. Scientific Reports, 2021, 11, 15027.	1.6	27
9	In vitro antimicrobial activity of cold atmospheric microwave plasma against bacteria causing canine skin and ear infections. Veterinary Dermatology, 2021, 32, 462.	0.4	6
10	Nano-encapsulated quercetin by soluble soybean polysaccharide/chitosan enhances anti-cancer, anti-inflammation, and anti-oxidant activities. Journal of Functional Foods, 2021, 87, 104756.	1.6	30
11	Potential Anti-Diabetic Activity of Pueraria lobata Flower (Flos Puerariae) Extracts. Molecules, 2020, 25, 3970.	1.7	16
12	Anti-proliferative activity of A. Oxyphylla and its bioactive constituent nootkatone in colorectal cancer cells. BMC Cancer, 2020, 20, 881.	1.1	26
13	Anticancer Effects of Cold Atmospheric Plasma in Canine Osteosarcoma Cells. International Journal of Molecular Sciences, 2020, 21, 4556.	1.8	7
14	Competitive inhibition by NAG-1/GDF-15 NLS peptide enhances its anti-cancer activity. Biochemical and Biophysical Research Communications, 2019, 519, 29-34.	1.0	13
15	Cold Atmospheric Plasma Induces HMGB1 Expression in Cancer Cells. Anticancer Research, 2019, 39, 2405-2413.	0.5	13
16	Growth differentiation factor 15 (GDF15): A survival protein with therapeutic potential in metabolic diseases., 2019, 198, 46-58.		106
17	Caffeic Acid Phenethyl Ester Loaded in Microemulsions: Enhanced In Vitro Activity against Colon and Breast Cancer Cells and Possible Cellular Mechanisms. Food Biophysics, 2019, 14, 80-89.	1.4	15
18	Self-assembled curcumin-soluble soybean polysaccharide nanoparticles: Physicochemical properties and in vitro anti-proliferation activity against cancer cells. Food Chemistry, 2018, 246, 82-89.	4.2	66

#	Article	IF	CITATIONS
19	Chitosanâ€'based nanoparticles with damnacanthal suppress CRM1 expression. Oncology Letters, 2018, 16, 7029-7034.	0.8	6
20	Chalcone Derivatives 4′-Amino-1-Naphthyl-Chalcone (D14) and 4′-Amino-4-Methyl-1-Naphthyl-Chalcone (D15) Suppress Migration and Invasion of Osteosarcoma Cells Mediated by p53 Regulating EMT-Related Genes. International Journal of Molecular Sciences, 2018, 19, 2838.	1.8	28
21	Moonlighting Activity of Secreted Inflammation-Regulatory Proteins. Yonsei Medical Journal, 2018, 59, 463.	0.9	8
22	The Curcumin Analog CH-5 Exerts Anticancer Effects in Human Osteosarcoma Cells via Modulation of Transcription Factors p53/Sp1. International Journal of Molecular Sciences, 2018, 19, 1909.	1.8	15
23	Trans-chalcone increases p53 activity via DNAJB1/HSP40 induction and CRM1 inhibition. PLoS ONE, 2018, 13, e0202263.	1.1	17
24	Chalcones Repressed the AURKA and MDR Proteins Involved in Metastasis and Multiple Drug Resistance in Breast Cancer Cell Lines. Molecules, 2018, 23, 2018.	1.7	30
25	Self-assembled nanomicelles of damnacanthal-loaded amphiphilic modified chitosan: Preparation, characterization and cytotoxicity study. Materials Science and Engineering C, 2017, 77, 1068-1077.	3.8	24
26	Cytotoxicity of trans-chalcone and licochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest. Biomedicine and Pharmacotherapy, 2017, 85, 425-433.	2.5	76
27	Antiproliferative and pro-apoptotic activities of 2′- and 4′-aminochalcones against tumor canine cells. European Journal of Medicinal Chemistry, 2017, 138, 884-889.	2.6	31
28	3,3′-diindolylmethane downregulates cyclin D1 through triggering endoplasmic reticulum stress in colorectal cancer cells. Oncology Reports, 2017, 38, 569-574.	1.2	10
29	A Boronic Acid Assay for the Detection of Mucinâ€1 Glycoprotein from Cancer Cells. ChemBioChem, 2017, 18, 1578-1582.	1.3	4
30	Over-expression of growth differentiation factor 15 (GDF15) preventing cold ischemia reperfusion (I/R) injury in heart transplantation through Foxo3a signaling. Oncotarget, 2017, 8, 36531-36544.	0.8	47
31	Anti-cancer activity of <i>trans</i> -chalcone in osteosarcoma: Involvement of Sp1 and p53. Molecular Carcinogenesis, 2016, 55, 1438-1448.	1.3	31
32	Tolfenamic acid downregulates \hat{l}^2 -catenin in colon cancer. International Immunopharmacology, 2016, 35, 287-293.	1.7	8
33	Anti-cancer effect of (-)-epigallocatechin-3-gallate (EGCG) in head and neck cancer through repression of transactivation and enhanced degradation of \hat{l}^2 -catenin. Phytomedicine, 2016, 23, 1344-1355.	2.3	50
34	Damnacanthal and its nanoformulation exhibit anti-cancer activity via cyclin D1 down-regulation. Life Sciences, 2016, 152, 60-66.	2.0	21
35	Moonlighting proteins in cancer. Cancer Letters, 2016, 370, 108-116.	3.2	59
36	BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion. Experimental Cell Research, 2015, 331, 1-10.	1.2	25

#	Article	IF	CITATIONS
37	pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity. Soft Matter, 2014, 10, 6820.	1.2	325
38	Anti-tumor activity of non-steroidal anti-inflammatory drugs: Cyclooxygenase-independent targets. Cancer Letters, 2014, 346, 217-224.	3.2	99
39	Tolfenamic acid induces apoptosis and growth inhibition in anaplastic thyroid cancer: Involvement of nonsteroidal anti-inflammatory drug-activated gene-1 expression and intracellular reactive oxygen species generation. Free Radical Biology and Medicine, 2014, 67, 115-130.	1.3	29
40	Nonsteroidal anti-inflammatory drug sulindac sulfide suppresses structural protein Nesprin-2 expression in colorectal cancer cells. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 322-331.	1.1	7
41	A novel COX-independent mechanism of sulindac sulfide involves cleavage of epithelial cell adhesion molecule protein. Experimental Cell Research, 2014, 326, 1-9.	1.2	8
42	The diverse roles of nonsteroidal anti-inflammatory drug activated gene (NAG-1/GDF15) in cancer. Biochemical Pharmacology, 2013, 85, 597-606.	2.0	126
43	3,3′-Diindolylmethane induces activating transcription factor 3 (ATF3) via ATF4 in human colorectal cancer cells. Journal of Nutritional Biochemistry, 2013, 24, 664-671.	1.9	32
44	Expression of NSAID-activated gene-1 by EGCG in head and neck cancer: involvement of ATM-dependent p53 expression. Journal of Nutritional Biochemistry, 2013, 24, 986-999.	1.9	49
45	Characterization of PPAR dual ligand MCC-555 in AOM-induced colorectal tumorigenesis. Experimental and Toxicologic Pathology, 2013, 65, 919-924.	2.1	6
46	Reactive oxygen species mediate tolfenamic acid-induced apoptosis in human colorectal cancer cells. Archives of Biochemistry and Biophysics, 2013, 537, 168-175.	1.4	24
47	Effect of Siam weed extract and its bioactive component scutellarein tetramethyl ether on anti-inflammatory activity through NF-κB pathway. Journal of Ethnopharmacology, 2013, 147, 434-441.	2.0	55
48	Enhanced Dispersibility and Bioactivity of Curcumin by Encapsulation in Casein Nanocapsules. Journal of Agricultural and Food Chemistry, 2013, 61, 6036-6043.	2.4	375
49	A mechanistic study of the proapoptotic effect of tolfenamic acid: involvement of NF-ÂB activation. Carcinogenesis, 2013, 34, 2350-2360.	1.3	16
50	Disruption of the transforming growth factor- \hat{l}^2 pathway by tolfenamic acid via the ERK MAP kinase pathway. Carcinogenesis, 2013, 34, 2900-2907.	1.3	13
51	The Involvement of Endoplasmic Reticulum Stress in the Suppression of Colorectal Tumorigenesis by Tolfenamic Acid. Cancer Prevention Research, 2013, 6, 1337-1347.	0.7	21
52	The Anticancer Effects of Resveratrol: Modulation of Transcription Factors. Nutrition and Cancer, 2012, 64, 493-502.	0.9	117
53	Cyclin D1 degradation and p21 induction contribute to growth inhibition of colorectal cancer cells induced by epigallocatechin-3-gallate. Journal of Cancer Research and Clinical Oncology, 2012, 138, 2051-2060.	1.2	54
54	A peroxisome proliferator-activated receptor ligand MCC-555 imparts anti-proliferative response in pancreatic cancer cells by PPARgamma-independent up-regulation of KLF4. Toxicology and Applied Pharmacology, 2012, 263, 225-232.	1.3	20

#	Article	IF	CITATIONS
55	Capsaicin represses transcriptional activity of \hat{l}^2 -catenin in human colorectal cancer cells. Journal of Nutritional Biochemistry, 2012, 23, 646-655.	1.9	78
56	Damnacanthal, a noni component, exhibits antitumorigenic activity in human colorectal cancer cells. Journal of Nutritional Biochemistry, 2012, 23, 915-923.	1.9	57
57	Tolfenamic Acid Induces Apoptosis and Growth Inhibition in Head and Neck Cancer: Involvement of NAG-1 Expression. PLoS ONE, 2012, 7, e34988.	1.1	34
58	Effect of (â^')â€epigallocatechin gallate on cyclin D1 downâ€regulation at the postâ€translational level. FASEB Journal, 2012, 26, 366.7.	0.2	0
59	Characterization of Noni component damnacanthal in antiâ€ŧumorigenic activity. FASEB Journal, 2012, 26, 797.2.	0.2	1
60	Characterization of PPARγ ligand MCCâ€555 in AOMâ€induced colorectal tumorigenesis. FASEB Journal, 2012, 26, 1050.18.	0.2	0
61	Molecular Targets of Resveratrol in Carcinogenesis. Evidence-based Anticancer Complementary and Alternative Medicine, 2011, , 319-347.	0.1	2
62	May–Hegglin anomaly in a dog. Veterinary Clinical Pathology, 2011, 40, 207-214.	0.3	12
63	COX inhibitors directly alter gene expression: role in cancer prevention?. Cancer and Metastasis Reviews, 2011, 30, 641-657.	2.7	34
64	Damnacanthal-Induced Anti-Inflammation is Associated with Inhibition of NF-& Description of NF-& Descripti	1.8	26
65	Resveratrol-Induced Apoptosis Is Mediated by Early Growth Response-1, Krüppel-Like Factor 4, and Activating Transcription Factor 3. Cancer Prevention Research, 2011, 4, 116-127.	0.7	46
66	Antidiabetic Activities of <i> Abutilon indicum </i> (L.) Sweet Are Mediated by Enhancement of Adipocyte Differentiation and Activation of the GLUT1 Promoter. Evidence-based Complementary and Alternative Medicine, 2011, 2011, 1-9.	0.5	28
67	Zyflamend Reduces the Expression of Androgen Receptor in a Model of Castrate-Resistant Prostate Cancer. Nutrition and Cancer, 2011, 63, 1287-1296.	0.9	22
68	In vitro anti-proliferative activity of alcoholic stem extract of Coscinium fenestratum in human colorectal cancer cells. Experimental and Therapeutic Medicine, 2010, 1, 181-186.	0.8	9
69	A potential proliferative gene, NUDT6, is down-regulated by green tea catechins at the posttranscriptional level. Journal of Nutritional Biochemistry, 2010, 21, 98-106.	1.9	16
70	MCC-555-induced NAG-1 expression is mediated in part by KLF4. European Journal of Pharmacology, 2010, 637, 30-37.	1.7	14
71	Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. Journal of Biotechnology, 2010, 150, 530-538.	1.9	173
72	NSAID-activated gene-1 as a molecular target for capsaicin-induced apoptosis through a novel molecular mechanism involving GSK3Â, C/EBPÂ and ATF3. Carcinogenesis, 2010, 31, 719-728.	1.3	83

#	Article	IF	CITATIONS
73	Epicatechin Gallate Suppresses Oxidative Stress–Induced MUC5AC Overexpression by Interaction with Epidermal Growth Factor Receptor. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 349-357.	1.4	19
74	Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells. Applied Physics Letters, 2010, 96, 243701.	1.5	111
7 5	Molecular targets of apigenin in colorectal cancer cells: Involvement of p21, NAG-1 and p53. European Journal of Cancer, 2010, 46, 3365-3374.	1.3	100
76	Cell adhesion property affected by cyclooxygenase and lipoxygenase: Opto-electric approach. Biochemical and Biophysical Research Communications, 2010, 391, 1385-1389.	1.0	11
77	Autonomous Bioluminescent Expression of the Bacterial Luciferase Gene Cassette (lux) in a Mammalian Cell Line. PLoS ONE, 2010, 5, e12441.	1.1	111
78	transâ€10,cisâ€12 CLA suppresses osteosarcoma cells via phosphoinositide 3â€kinase pathway. FASEB Journal, 2010, 24, lb381.	0.2	0
79	(-)-Epigallocatechin-3-gallate (EGCG) post-transcriptionally and post-translationally suppresses the cell proliferative protein TROP2 in human colorectal cancer cells. Anticancer Research, 2010, 30, 2497-503.	0.5	36
80	Anti-cancer Property of Epicatechin Gallate in Colon Cancer Cells. , 2009, , 871-878.		0
81	Review Paper: Cancer Chemopreventive Compounds and Canine Cancer. Veterinary Pathology, 2009, 46, 576-588.	0.8	19
82	Signal Pathway of 17β-Estradiol–InducedMUC5BExpression in Human Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 168-178.	1.4	60
83	The Cyclooxygenase Inhibitor Sulindac Sulfide Inhibits EP4 Expression and Suppresses the Growth of Glioblastoma Cells. Cancer Prevention Research, 2009, 2, 1088-1099.	0.7	12
84	Nonsteroidal Anti-inflammatory Drug-Activated Gene-1 Expression Inhibits Urethane-Induced Pulmonary Tumorigenesis in Transgenic Mice. Cancer Prevention Research, 2009, 2, 450-458.	0.7	54
85	A reciprocal relationship exists between non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) and cyclooxygenase-2. Cancer Letters, 2009, 282, 152-158.	3.2	30
86	Changes in hepatic gene expression in dogs with experimentally induced nutritional iron deficiency. Veterinary Clinical Pathology, 2009, 38, 13-19.	0.3	12
87	Multiple mechanisms are involved in 6â€gingerolâ€induced cell growth arrest and apoptosis in human colorectal cancer cells. Molecular Carcinogenesis, 2008, 47, 197-208.	1.3	181
88	Epigallocatechin-3-gallate inhibits interleukin- $\hat{1}^2$ -induced MUC5AC gene expression and MUC5AC secretion in normal human nasal epithelial cells. Journal of Nutritional Biochemistry, 2008, 19, 536-544.	1.9	20
89	Molecular characterisation of canine nonsteroidal anti-inflammatory drug-activated gene (NAG-1). Veterinary Journal, 2008, 175, 89-95.	0.6	10
90	A Green Tea Component Suppresses Posttranslational Expression of Basic Fibroblast Growth Factor in Colorectal Cancer. Gastroenterology, 2008, 134, 1972-1980.	0.6	62

#	Article	IF	CITATIONS
91	ESE-1/EGR-1 pathway plays a role in tolfenamic acid-induced apoptosis in colorectal cancer cells. Molecular Cancer Therapeutics, 2008, 7, 3739-3750.	1.9	58
92	Peroxisome proliferator-activated receptor ligand MCC-555 suppresses intestinal polyps in <i>ApcMin/</i> + mice via extracellular signal-regulated kinase and peroxisome proliferator-activated receptor-dependent pathways. Molecular Cancer Therapeutics, 2008, 7, 2779-2787.	1.9	23
93	Expression of NUANCE, a potential novel oncogene, is inhibited by nonsteroidal antiâ€inflammatory drugs (NSAIDs) in human colorectal cancer cells. FASEB Journal, 2008, 22, 1031.1.	0.2	O
94	Gene alterations by peroxisome proliferator-activated receptor gamma agonists in human colorectal cancer cells. International Journal of Oncology, 2008, 32, 809-19.	1.4	13
95	Breast Cancer Cell Proliferation Is Inhibited by BAD. Journal of Biological Chemistry, 2007, 282, 28864-28873.	1.6	30
96	Green tea catechin (â^')-epicatechin gallate induces tumour suppressor protein ATF3 via EGR-1 activation. European Journal of Cancer, 2007, 43, 2404-2412.	1.3	44
97	Berberine, a natural isoquinoline alkaloid, induces NAG-1 and ATF3 expression in human colorectal cancer cells. Cancer Letters, 2007, 258, 230-240.	3.2	96
98	Nonsteroidal Anti-Inflammatory Drug-Activated Gene-1 Over Expression in Transgenic Mice Suppresses Intestinal Neoplasia. Gastroenterology, 2006, 131, 1553-1560.	0.6	156
99	Comparative Study of Three Proteomic Quantitative Methods, DIGE, clCAT, and iTRAQ, Using 2D Gel- or LCâ~MALDI TOF/TOF. Journal of Proteome Research, 2006, 5, 651-658.	1.8	557
100	Growth inhibition and apoptosis by $(\hat{a}^{"})$ -epicatechin gallate are mediated by cyclin D1 suppression in head and neck squamous carcinoma cells. European Journal of Cancer, 2006, 42, 3260-3266.	1.3	54
101	Changes in gene expression contribute to cancer prevention by COX inhibitors. Progress in Lipid Research, 2006, 45, 1-16.	5.3	77
102	Prostate derived factor in human prostate cancer cells: Gene induction by vitamin D via a p53-dependent mechanism and inhibition of prostate cancer cell growth. Journal of Cellular Physiology, 2006, 208, 566-574.	2.0	73
103	Activating Transcription Factor 3 and Early Growth Response 1 Are the Novel Targets of LY294002 in a Phosphatidylinositol 3-Kinase–Independent Pathway. Cancer Research, 2006, 66, 2376-2384.	0.4	65
104	Conjugated linoleic acid stimulates an anti-tumorigenic protein NAG-1 in an isomer specific manner. Carcinogenesis, 2006, 27, 972-981.	1.3	111
105	Drug-Induced Expression of Nonsteroidal Anti-Inflammatory Drug-Activated Gene/Macrophage Inhibitory Cytokine-1/Prostate-Derived Factor, a Putative Tumor Suppressor, Inhibits Tumor Growth. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 899-906.	1.3	49
106	A novel peroxisome proliferatorâ \in activated receptor \hat{I}^3 ligand, MCC-555, induces apoptosis via posttranscriptional regulation of NAG-1 in colorectal cancer cells. Molecular Cancer Therapeutics, 2006, 5, 1352-1361.	1.9	60
107	NSAID Activated Gene (NAG-1), a Modulator of Tumorigenesis. BMB Reports, 2006, 39, 649-655.	1.1	88
108	Anti-proliferative effect of horehound leaf and wild cherry bark extracts on human colorectal cancer cells. Oncology Reports, 2006, 15, 275-81.	1.2	20

#	Article	IF	Citations
109	Molecular Targets of Dietary Polyphenols with Anti-inflammatory Properties. Yonsei Medical Journal, 2005, 46, 585.	0.9	287
110	The conventional nonsteroidal anti-inflammatory drug sulindac sulfide arrests ovarian cancer cell growth via the expression of $\langle i \rangle$ NAG-1/MIC-1/GDF-15 $\langle i \rangle$. Molecular Cancer Therapeutics, 2005, 4, 487-493.	1.9	61
111	Overexpression of 15-Lipoxygenase-1 Induces Growth Arrest through Phosphorylation of p53 in Human Colorectal Cancer Cells. Molecular Cancer Research, 2005, 3, 511-517.	1.5	30
112	Prostaglandin E2 Induces MUC8 Gene Expression via a Mechanism Involving ERK MAPK/RSK1/cAMP Response Element Binding Protein Activation in Human Airway Epithelial Cells. Journal of Biological Chemistry, 2005, 280, 6676-6681.	1.6	38
113	Evaluation of Polycyclic Aromatic Hydrocarbons in the Activation of Early Growth Response-1 and Peroxisome Proliferator Activated Receptors. Toxicological Sciences, 2005, 85, 585-593.	1.4	63
114	Cyclooxygenase Inhibitors Induce the Expression of the Tumor Suppressor Gene EGR-1, Which Results in the Up-Regulation of NAG-1, an Antitumorigenic Protein. Molecular Pharmacology, 2005, 67, 356-364.	1.0	145
115	Indole-3-carbinol and 3,3′-diindolylmethane induce expression of NAG-1 in a p53-independent manner. Biochemical and Biophysical Research Communications, 2005, 328, 63-69.	1.0	115
116	1,1-Bis(3′-indolyl)-1-(p-substitutedphenyl)methanes Are Peroxisome Proliferator-Activated Receptor γ Agonists but Decrease HCT-116 Colon Cancer Cell Survival through Receptor-Independent Activation of Early Growth Response-1 and Nonsteroidal Anti-Inflammatory Drug-Activated Gene-1. Molecular Pharmacology, 2005, 68, 1782-1792.	1.0	87
117	Identification of Nonsteroidal Anti-inflammatory Drug-activated Gene (NAG-1) as a Novel Downstream Target of Phosphatidylinositol 3-Kinase/AKT/GSK-3Î ² Pathway. Journal of Biological Chemistry, 2004, 279, 49617-49623.	1.6	93
118	Expression of NAC-1, a Transforming Growth Factor- \hat{I}^2 Superfamily Member, by Troglitazone Requires the Early Growth Response Gene EGR-1. Journal of Biological Chemistry, 2004, 279, 6883-6892.	1.6	119
119	Selective Nonsteroidal Anti-Inflammatory Drugs Induce Thymosin \hat{l}^2 -4 and Alter Actin Cytoskeletal Organization in Human Colorectal Cancer Cells. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 885-891.	1.3	18
120	EGR1 Is a Novel Target for AhR Agonists in Human Lung Epithelial Cells. Toxicological Sciences, 2004, 82, 429-435.	1.4	21
121	Epicatechin gallate-induced expression of NAG-1 is associated with growth inhibition and apoptosis in colon cancer cells. Carcinogenesis, 2004, 25, 2425-2432.	1.3	159
122	Cyclooxygenase inhibitors induce apoptosis in oral cavity cancer cells by increased expression of nonsteroidal anti-inflammatory drug-activated gene. Biochemical and Biophysical Research Communications, 2004, 325, 1298-1303.	1.0	77
123	Molecular cloning and expression of canine hepcidin. Veterinary Clinical Pathology, 2004, 33, 223-227.	0.3	35
124	Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is induced by genistein through the expression of p53 in colorectal cancer cells. International Journal of Cancer, 2003, 105, 747-753.	2.3	109
125	Nordihydroguaiaretic acid, an antioxidant, inhibits transforming growth factor- \hat{l}^2 activity through the inhibition of Smad signaling pathway. Experimental Cell Research, 2003, 289, 335-341.	1.2	23
126	Troglitazone, a Peroxisome Proliferator-activated Receptor \hat{l}^3 (PPAR \hat{l}^3) Ligand, Selectively Induces the Early Growth Response-1 Gene Independently of PPAR \hat{l}^3 . Journal of Biological Chemistry, 2003, 278, 5845-5853.	1.6	169

#	Article	IF	Citations
127	Differential Regulation of Nonsteroidal Anti-Inflammatory Drug-Activated Gene in Normal Human Tracheobronchial Epithelial and Lung Carcinoma Cells by Retinoids. Molecular Pharmacology, 2003, 63, 557-564.	1.0	52
128	Expression of Non-steroidal Anti-inflammatory Drug-activated Gene-1 in Human Nasal Mucosa and Cultured Nasal Epithelial Cells: A Preliminary Investigation. Acta Oto-Laryngologica, 2003, 123, 857-861.	0.3	4
129	Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53. Carcinogenesis, 2002, 23, 425-432.	1.3	174
130	Dual Function of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs): Inhibition of Cyclooxygenase and Induction of NSAID-Activated Gene. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 1126-1131.	1.3	120
131	Expression and regulation of nonsteroidal anti-inflammatory drug–activated gene (NAG-1) in human and mouse tissue. Gastroenterology, 2002, 122, 1388-1398.	0.6	98
132	Diallyl Disulfide (DADS) Induces the Antitumorigenic NSAID-Activated Gene (NAG-1) by a p53-Dependent Mechanism in Human Colorectal HCT 116 Cells. Journal of Nutrition, 2002, 132, 773-778.	1.3	99
133	Effect of PPAR Activators on Cytokine-Stimulated Cyclooxygenase-2 Expression in Human Colorectal Carcinoma Cells. Experimental Cell Research, 2001, 267, 73-80.	1.2	37
134	Simplified Simulation of Network and Gel Formation in Free-Radical Copolymerization. Macromolecular Theory and Simulations, 2001, 10, 46-53.	0.6	0
135	Molecular Cloning and Characterization of Human Nonsteroidal Anti-inflammatory Drug-activated Gene Promoter. Journal of Biological Chemistry, 2001, 276, 33384-33392.	1.6	121
136	Expression of Gab1 Lacking the Pleckstrin Homology Domain Is Associated with Neoplastic Progression. Molecular and Cellular Biology, 2001, 21, 6895-6905.	1.1	18
137	Cyclooxygenase Inhibitors Regulate the Expression of a TGF- \hat{l}^2 Superfamily Member That Has Proapoptotic and Antitumorigenic Activities. Molecular Pharmacology, 2001, 59, 901-908.	1.0	366
138	Lack of Cyclooxygenase-2 Activity in HT-29 Human Colorectal Carcinoma Cells. Experimental Cell Research, 2000, 256, 563-570.	1.2	54
139	Genomic structure and polymorphism of the human thromboxane synthase-encoding gene. Gene, 1996, 173, 251-256.	1.0	16
140	Multiple factors regulating the expression of human thromboxane synthase gene. Biochemical Journal, 1996, 319, 783-791.	1.7	17
141	The porcine thromboxane synthase-encoding cDNA: sequence, mRNA expression and enzyme production m Sf9 insect cells. Gene, 1994, 140, 261-265.	1.0	16
142	Mapping of the Human Thromboxane Synthase Gene (TBXAS1) to Chromosome 7q34-q35 by Two-Color Fluorescence in Situ Hybridization. Genomics, 1993, 16, 771-773.	1.3	18
143	Evaluation of cold atmospheric microwave plasma on skin physiological parameters and tolerability in dogs. Veterinary Dermatology, 0, , .	0.4	3