Andrew F Stewart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1373112/publications.pdf

Version: 2024-02-01

46 papers

3,195 citations

186265 28 h-index 223800 46 g-index

49 all docs

49 docs citations

times ranked

49

3711 citing authors

#	Article	IF	Citations
1	Histone H3 dopaminylation in ventral tegmental area underlies heroin-induced transcriptional and behavioral plasticity in male rats. Neuropsychopharmacology, 2022, 47, 1776-1783.	5.4	17
2	Disrupting the DREAM complex enables proliferation of adult human pancreatic \hat{l}^2 cells. Journal of Clinical Investigation, 2022, 132, .	8.2	14
3	Epigenetics of Drug Addiction. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a040253.	6.2	21
4	<i>USP8</i> and <i>TP53</i> Drivers are Associated with CNV in a Corticotroph Adenoma Cohort Enriched for Aggressive Tumors. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 826-842.	3.6	34
5	DYRK1A Inhibitors as Potential Therapeutics for \hat{I}^2 -Cell Regeneration for Diabetes. Journal of Medicinal Chemistry, 2021, 64, 2901-2922.	6.4	38
6	In vivo screen identifies a SIK inhibitor that induces \hat{l}^2 cell proliferation through a transient UPR. Nature Metabolism, 2021, 3, 682-700.	11.9	18
7	Human Beta Cell Regenerative Drug Therapy for Diabetes: Past Achievements and Future Challenges. Frontiers in Endocrinology, 2021, 12, 671946.	3.5	24
8	What is a \hat{I}^2 cell? \hat{a} Chapter I in the Human Islet Research Network (HIRN) review series. Molecular Metabolism, 2021, 53, 101323.	6.5	20
9	Aberrant methylation underlies insulin gene expression in human insulinoma. Nature Communications, 2020, 11, 5210.	12.8	9
10	A 3D atlas of the dynamic and regional variation of pancreatic innervation in diabetes. Science Advances, 2020, 6, .	10.3	33
11	Glucose-dependent partitioning of arginine to the urea cycle protects β-cells from inflammation. Nature Metabolism, 2020, 2, 432-446.	11.9	27
12	GLP-1 receptor agonists synergize with DYRK1A inhibitors to potentiate functional human \hat{l}^2 cell regeneration. Science Translational Medicine, 2020, 12, .	12.4	81
13	Synthesis and Biological Validation of a Harmine-Based, Central Nervous System (CNS)-Avoidant, Selective, Human β-Cell Regenerative Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase A (DYRK1A) Inhibitor. Journal of Medicinal Chemistry, 2020, 63, 2986-3003.	6.4	36
14	Structure–Activity Relationships and Biological Evaluation of 7-Substituted Harmine Analogs for Human β-Cell Proliferation. Molecules, 2020, 25, 1983.	3.8	13
15	Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking. Science, 2020, 368, 197-201.	12.6	152
16	Pharmacologic and genetic approaches define human pancreatic \hat{l}^2 cell mitogenic targets of DYRK1A inhibitors. JCI Insight, 2020, 5, .	5.0	35
17	SUN-654 Dynamic and Regional Variation of Pancreatic Innervation in Diabetes. Journal of the Endocrine Society, 2020, 4, .	0.2	0
18	Myc Is Required for Adaptive Î ² -Cell Replication in Young Mice but Is Not Sufficient in One-Year-Old Mice Fed With a High-Fat Diet. Diabetes, 2019, 68, 1934-1949.	0.6	23

#	Article	IF	CITATIONS
19	Combined Inhibition of DYRK1A, SMAD, and Trithorax Pathways Synergizes to Induce Robust Replication in Adult Human Beta Cells. Cell Metabolism, 2019, 29, 638-652.e5.	16.2	113
20	Replication confers \hat{l}^2 cell immaturity. Nature Communications, 2018, 9, 485.	12.8	123
21	Advances in drug discovery for human beta cell regeneration. Diabetologia, 2018, 61, 1693-1699.	6.3	24
22	Development of Kinase-Selective, Harmine-Based DYRK1A Inhibitors that Induce Pancreatic Human \hat{l}^2 -Cell Proliferation. Journal of Medicinal Chemistry, 2018, 61, 7687-7699.	6.4	58
23	Novel selective thiadiazine DYRK1A inhibitor lead scaffold with human pancreatic \hat{l}^2 -cell proliferation activity. European Journal of Medicinal Chemistry, 2018, 157, 1005-1016.	5 . 5	36
24	Human Pancreatic \hat{l}^2 Cell IncRNAs Control Cell-Specific Regulatory Networks. Cell Metabolism, 2017, 25, 400-411.	16.2	195
25	Insights into beta cell regeneration for diabetes via integration of molecular landscapes in human insulinomas. Nature Communications, 2017, 8, 767.	12.8	67
26	CDK4/6 Inhibition on Glucose and Pancreatic Beta Cell Homeostasis in Young and Aged Rats. Molecular Cancer Research, 2017, 15, 1531-1541.	3 . 4	15
27	Parathyroid Hormone-Related Peptide (1-36) Enhances Beta Cell Regeneration and Increases Beta Cell Mass in a Mouse Model of Partial Pancreatectomy. PLoS ONE, 2016, 11, e0158414.	2.5	19
28	Development of a reliable automated screening system to identify small molecules and biologics that promote human \hat{l}^2 -cell regeneration. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E859-E868.	3 . 5	31
29	Human β-Cell Proliferation and Intracellular Signaling: Part 3. Diabetes, 2015, 64, 1872-1885.	0.6	120
30	Diabetes mellitusâ \in "advances and challenges in human \hat{l}^2 -cell proliferation. Nature Reviews Endocrinology, 2015, 11, 201-212.	9.6	169
31	A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nature Medicine, 2015, 21, 383-388.	30.7	313
32	Augmented Stat5 Signaling Bypasses Multiple Impediments to Lactogen-Mediated Proliferation in Human \hat{l}^2 -Cells. Diabetes, 2015, 64, 3784-3797.	0.6	52
33	Good news for the ageing beta cell. Diabetologia, 2014, 57, 265-269.	6.3	5
34	Betatrophin Versus Bitter-Trophin and the Elephant in the Room: Time for a New Normal in \hat{l}^2 -Cell Regeneration Research. Diabetes, 2014, 63, 1198-1199.	0.6	37
35	Human \hat{l}^2 -Cell Proliferation and Intracellular Signaling Part 2: Still Driving in the Dark Without a Road Map. Diabetes, 2014, 63, 819-831.	0.6	155
36	Human Pancreatic β-Cell G1/S Molecule Cell Cycle Atlas. Diabetes, 2013, 62, 2450-2459.	0.6	62

3

#	Article	IF	CITATIONS
37	Cytoplasmic-Nuclear Trafficking of G1/S Cell Cycle Molecules and Adult Human \hat{l}^2 -Cell Replication. Diabetes, 2013, 62, 2460-2470.	0.6	53
38	Regulated and Reversible Induction of Adult Human \hat{I}^2 -Cell Replication. Diabetes, 2012, 61, 418-424.	0.6	25
39	A Human Islet Cell Culture System for High-Throughput Screening. Journal of Biomolecular Screening, 2012, 17, 509-518.	2.6	54
40	Human β-Cell Proliferation and Intracellular Signaling. Diabetes, 2012, 61, 2205-2213.	0.6	208
41	cMyc Is a Principal Upstream Driver of \hat{l}^2 -Cell Proliferation in Rat Insulinoma Cell Lines and Is an Effective Mediator of Human \hat{l}^2 -Cell Replication. Molecular Endocrinology, 2011, 25, 1760-1772.	3.7	46
42	Parathyroid Hormone–Related Protein Enhances Human β-Cell Proliferation and Function With Associated Induction of Cyclin-Dependent Kinase 2 and Cyclin E Expression. Diabetes, 2010, 59, 3131-3138.	0.6	55
43	Induction of Human \hat{I}^2 -Cell Proliferation and Engraftment Using a Single G1/S Regulatory Molecule, cdk6. Diabetes, 2010, 59, 1926-1936.	0.6	120
44	Survey of the Human Pancreatic \hat{l}^2 -Cell G1/S Proteome Reveals a Potential Therapeutic Role for Cdk-6 and Cyclin D1 in Enhancing Human \hat{l}^2 -Cell Replication and Function In Vivo. Diabetes, 2009, 58, 882-893.	0.6	106
45	Induction of \hat{I}^2 -Cell Proliferation and Retinoblastoma Protein Phosphorylation in Rat and Human Islets Using Adenovirus-Mediated Transfer of Cyclin-Dependent Kinase-4 and Cyclin D1. Diabetes, 2004, 53, 149-159.	0.6	127
46	Targeted Expression of Placental Lactogen in the Beta Cells of Transgenic Mice Results in Beta Cell Proliferation, Islet Mass Augmentation, and Hypoglycemia. Journal of Biological Chemistry, 2000, 275, 15399-15406.	3.4	180