Ingrid Jordens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1372499/publications.pdf

Version: 2024-02-01

20 3,136
papers citations h-

18 20
h-index g-index

21 21 docs citations

21 times ranked 5306 citing authors

#	Article	IF	CITATIONS
1	<scp>RNF</scp> 43 truncations trap <scp>CK</scp> 1 to drive nicheâ€independent selfâ€renewal in cancer. EMBO Journal, 2020, 39, e103932.	7.8	31
2	R-spondins engage heparan sulfate proteoglycans to potentiate WNT signaling. ELife, 2020, 9, .	6.0	37
3	Anti-LRP5/6 VHHs promote differentiation of Wnt-hypersensitive intestinal stem cells. Nature Communications, 2019, 10, 365.	12.8	53
4	Wnt Signaling Directs Neuronal Polarity and Axonal Growth. IScience, 2019, 13, 318-327.	4.1	22
5	TMEM59 potentiates Wnt signaling by promoting signalosome formation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3996-E4005.	7.1	36
6	Variants in members of the cadherin–catenin complex, CDH1 and CTNND1, cause blepharocheilodontic syndrome. European Journal of Human Genetics, 2018, 26, 210-219.	2.8	34
7	Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature, 2016, 530, 340-343.	27.8	425
8	Axin cancer mutants form nanoaggregates to rewire the Wnt signaling network. Nature Structural and Molecular Biology, 2016, 23, 324-332.	8.2	31
9	Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature, 2012, 488, 665-669.	27.8	791
10	Wnt/ \hat{l}^2 -catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E812-20.	7.1	172
11	GLUT4 Is Sorted to Vesicles Whose Accumulation Beneath and Insertion into the Plasma Membrane Are Differentially Regulated by Insulin and Selectively Affected by Insulin Resistance. Molecular Biology of the Cell, 2010, 21, 1375-1386.	2.1	56
12	Insulin-regulated Aminopeptidase Is a Key Regulator of GLUT4 Trafficking by Controlling the Sorting of GLUT4 from Endosomes to Specialized Insulin-regulated Vesicles. Molecular Biology of the Cell, 2010, 21, 2034-2044.	2.1	56
13	Activation of endosomal dynein motors by stepwise assembly of Rab7–RILP–p150Glued, ORP1L, and the receptor βlll spectrin. Journal of Cell Biology, 2007, 176, 459-471.	5.2	414
14	A splice variant of RILP induces lysosomal clustering independent of dynein recruitment. Biochemical and Biophysical Research Communications, 2006, 344, 747-756.	2.1	6
15	Rab7 and Rab27a control two motor protein activities involved in melanosomal transport. Pigment Cell & Melanoma Research, 2006, 19, 412-423.	3.6	81
16	Rab Proteins, Connecting Transport and Vesicle Fusion. Traffic, 2005, 6, 1070-1077.	2.7	275
17	Chaperoning Antigen Presentation by MHC Class II Molecules and Their Role in Oncogenesis. Advances in Cancer Research, 2005, 93, 129-158.	5.0	13
18	Dynein-mediated Vesicle Transport Controls Intracellular Salmonella Replication. Molecular Biology of the Cell, 2004, 15, 2954-2964.	2.1	71

INGRID JORDENS

#	Article	IF	CITATIONS
19	Plexin-B semaphorin receptors interact directly with active Rac and regulate the actin cytoskeleton by activating Rho. Current Biology, 2001 , 11 , $339-344$.	3.9	174
20	Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Current Biology, 2001, 11, 1645-1655.	3.9	357