

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1372183/publications.pdf Version: 2024-02-01

IÃORC EVERS

#	Article	IF	CITATIONS
1	Inverse design approach to x-ray quantum optics with Mössbauer nuclei in thin-film cavities. Physical Review A, 2022, 105, .	2.5	11
2	Coherent X-rayâ^'optical control of nuclear excitons. Nature, 2021, 590, 401-404.	27.8	26
3	Quantum Optical Phenomena in Nuclear Resonant Scattering. Topics in Applied Physics, 2021, , 105-171.	0.8	4
4	Spontaneous decay processes in a classical strong low-frequency laser field. Physical Review A, 2020, 102, .	2.5	3
5	Backaction-free measurement of quantum correlations via quantum time-domain interferometry. Physical Review A, 2020, 101, .	2.5	0
6	<i>AbÂlnitio</i> Few-Mode Theory for Quantum Potential Scattering Problems. Physical Review X, 2020, 10, .	8.9	16
7	Quantum and Nonlinear Optics with Hard X-Rays. , 2020, , 1399-1431.		4
8	Birth, death, and revival of spontaneous emission in a three-atom system. Physical Review Research, 2020, 2, .	3.6	3
9	<i>Ab initio</i> quantum models for thin-film x-ray cavity QED. Physical Review Research, 2020, 2, .	3.6	16
10	Phase-sensitive nuclear target spectroscopy. Physical Review Research, 2020, 2, .	3.6	3
11	Time-Resolved sub-Ãngström Metrology by Temporal Phase Interferometry near X-Ray Resonances of Nuclei. Physical Review Letters, 2019, 123, 153902.	7.8	4
12	Probing Quantum Dynamical Couple Correlations with Time-Domain Interferometry. Physical Review Letters, 2019, 122, 025301.	7.8	3
13	Spectral narrowing of x-ray pulses for precision spectroscopy with nuclear resonances. Science, 2017, 357, 375-378.	12.6	41
14	Collective dynamics in a laser-pumped mixture of two atomic ensembles. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1280.	2.1	0
15	Tailoring superradiance to design artificial quantum systems. Scientific Reports, 2016, 6, 23628.	3.3	25
16	Quantum and Nonlinear Optics with Hard X-Rays. , 2016, , 1197-1229.		1
17	Temporal dynamics of stimulated emission with applications in nuclear quantum optics. Physical Review A, 2015, 91, .	2.5	1
18	Pulse splitting in light propagation through <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi>-type atomic media due to an interplay of Kerr nonlinearity and group-velocity dispersion. Physical Review A, 2015, 92, .</mml:math 	2.5	8

#	Article	IF	CITATIONS
19	Electromagnetically-induced-transparency–like phenomenon with resonant meta-atoms in a cavity. Physical Review A, 2015, 92, .	2.5	13
20	Tunable Subluminal Propagation of Narrow-band X-Ray Pulses. Physical Review Letters, 2015, 114, 203601.	7.8	58
21	Collective effects between multiple nuclear ensembles in an x-ray cavity-QED setup. Physical Review A, 2015, 91, .	2.5	21
22	Interferometric phase detection at x-ray energies via Fano resonance control. Physical Review Letters, 2015, 114, 207401.	7.8	61
23	Quantum and Nonlinear Optics with Hard X-Rays. , 2015, , 1-28.		2
24	Probing few-excitation eigenstates of interacting atoms on a lattice by observing their collective light emission in the far field. Physical Review A, 2014, 90, .	2.5	4
25	Far-Field Signatures of a Two-Body Bound State in Collective Emission from Interacting Two-Level Atoms on a Lattice. Physical Review Letters, 2014, 112, 193601.	7.8	7
26	Diffractionless image propagation and frequency conversion via four-wave mixing exploiting the thermal motion of atoms. Physical Review A, 2014, 89, .	2.5	9
27	Uniform phase modulation via control of refractive index in a thermal atom vapor with vanishing diffraction or absorption. Physical Review A, 2014, 90, .	2.5	10
28	Optical cloning of arbitrary images beyond the diffraction limits. Physical Review A, 2013, 88, .	2.5	22
29	X-ray quantum optics. Journal of Modern Optics, 2013, 60, 2-21.	1.3	120
30	Lorentz Meets Fano in Spectral Line Shapes: A Universal Phase and Its Laser Control. Science, 2013, 340, 716-720.	12.6	404
31	X-ray quantum optics with Mössbauer nuclei embedded in thin-film cavities. Physical Review A, 2013, 88,	2.5	44
32	Optical Diode Made from a Moving Photonic Crystal. Physical Review Letters, 2013, 110, 093901.	7.8	292
33	Negative refraction with tunable absorption in an active dense gas of atoms. New Journal of Physics, 2013, 15, 013027.	2.9	16
34	Control of beam propagation in optically written waveguides beyond the paraxial approximation. Physical Review A, 2013, 87, .	2.5	11
35	Spectrum of collective spontaneous emission beyond the rotating-wave approximation. Physical Review A, 2013, 87, .	2.5	25
36	Vacuum-Assisted Generation and Control of Atomic Coherences at X-Ray Energies. Physical Review Letters, 2013, 111, 073601.	7.8	95

#	Article	IF	CITATIONS
37	Numerical simulations of optical centroid measurements with nonclassical fields. Physical Review A, 2013, 87, .	2.5	1
38	Effect of retardation on the dynamics of entanglement between atoms. Physical Review A, 2012, 86, .	2.5	9
39	Collective spontaneous emission beyond the rotating-wave approximation. Physical Review A, 2012, 85, .	2.5	27
40	Quantum teleportation of high-dimensional atomic ensemble states. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 095502.	1,5	5
41	Streaking at high energies with electrons and positrons. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 702, 383-387.	4.1	24
42	A Maxwell–Schrödinger solver for quantum optical few-level systems. Computer Physics Communications, 2011, 182, 739-747.	7.5	8
43	Stationary entanglement in strongly coupled qubits. Physical Review B, 2011, 84, .	3.2	13
44	Microcavities coupled to multilevel atoms. Physical Review A, 2011, 84, .	2.5	9
45	Nondiffracting optical beams in a three-level Raman system. Physical Review A, 2011, 84, .	2.5	25
46	Photon scattering from strongly driven atomic ensembles. Physical Review A, 2011, 84, .	2.5	6
47	Subwavelength position measurements with running-wave driving fields. Physical Review A, 2011, 84, .	2.5	5
48	Pathway interference in a loop array of three coupled microresonators. Physical Review A, 2011, 84, .	2.5	14
49	Coherent control of the cooperative branching ratio for nuclear x-ray pumping. Physical Review B, 2011, 83, .	3.2	6
50	Interplay of vacuum-mediated inter- and intra-atomic couplings in a pair of atoms. Physical Review A, 2010, 81, .	2.5	19
51	Vacuum-Induced Processes in Multilevel Atoms. Progress in Optics, 2010, 55, 85-197.	0.6	80
52	Dressed-Atom Multiphoton Analysis of Anomalous Electromagnetically Induced Absorption. Physical Review Letters, 2010, 104, 213602.	7.8	26
53	Quantum teleportation of four-dimensional qudits. Physical Review A, 2010, 82, .	2.5	20
54	Ground-state cooling of a nanomechanical resonator coupled to two interacting flux qubits. Physical Review B, 2010, 82, .	3.2	11

#	Article	IF	CITATIONS
55	Measurement of distance and orientation of two atoms in arbitrary geometry. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 045501.	1.5	7
56	LIGHT PROPAGATION: FROM ATOMIC TO NUCLEAR QUANTUM OPTICS. , 2010, , .		0
57	Quantum entanglement in dense multiqubit systems. Journal of Modern Optics, 2010, 57, 1287-1292.	1.3	6
58	Loading atom lasers by collectivity-enhanced optical pumping. Physical Review A, 2010, 81, .	2.5	0
59	Coherent control of nuclear forward scattering. Journal of Modern Optics, 2010, 57, 1993-2003.	1.3	9
60	Spontaneous emission interference in negative-refractive-index waveguides. Physical Review B, 2009, 80, .	3.2	52
61	Single-Photon Entanglement in the keV Regime via Coherent Control of Nuclear Forward Scattering. Physical Review Letters, 2009, 103, 017401.	7.8	52
62	Robust coherent preparation of entangled states of two coupled flux qubits via dynamic control of the transition frequencies. Physical Review B, 2009, 79, .	3.2	14
63	Atom microscopy via two-photon spontaneous emission spectroscopy. Physical Review A, 2009, 79, .	2.5	27
64	Ground State Cooling of a Nanomechanical Resonator in the Nonresolved Regime via Quantum Interference. Physical Review Letters, 2009, 103, 227203.	7.8	59
65	Yoctosecond Photon Pulses from Quark-Gluon Plasmas. Physical Review Letters, 2009, 103, 152301.	7.8	21
66	Phase-controlled pulse propagation in media with cross coupling of electric and magnetic probe field component. Physical Review A, 2009, 80, .	2.5	19
67	Photon polarization as a probe for quark–gluon plasma dynamics. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 666, 315-319.	4.1	27
68	High-energy, nuclear, and QED processes in strong laser fields. Laser Physics, 2008, 18, 175-184.	1.2	20
69	Electric-dipole-forbidden nuclear transitions driven by super-intense laser fields. Physical Review C, 2008, 77, .	2.9	45
70	Four-wave mixing enhanced white-light cavity. Physical Review A, 2008, 78, .	2.5	22
71	Parametric and nonparametric magnetic response enhancement via electrically induced magnetic moments. Physical Review A, 2008, 78, .	2.5	6
72	Dipole-dipole interaction between orthogonal dipole moments in time-dependent geometries. Physical Review A. 2008, 77	2.5	15

#	Article	IF	CITATIONS
73	Nonlinear effects in pulse propagation through Doppler-broadened closed-loop atomic media. Physical Review A, 2008, 77, .	2.5	22
74	Resonant Interferometric Lithography beyond the Diffraction Limit. Physical Review Letters, 2008, 100, 073602.	7.8	72
75	Laser-induced dynamic radiative corrections in the dressed-state and in the Floquet picture. Journal of Modern Optics, 2007, 54, 1481-1495.	1.3	4
76	Breakdown of the few-level approximation in collective systems. Physical Review A, 2007, 76, .	2.5	15
77	Localization of atomic ensembles via superfluorescence. Physical Review A, 2007, 75, .	2.5	42
78	Strong-Field Spatial Interference in a Tailored Electromagnetic Bath. Physical Review Letters, 2007, 98, 043602.	7.8	19
79	Coherent control in a decoherence-free subspace of a collective multilevel system. Physical Review A, 2007, 75, .	2.5	26
80	Isomer Triggering via Nuclear Excitation by Electron Capture. Physical Review Letters, 2007, 99, 172502.	7.8	60
81	Atom localization and center-of-mass wave-function determination via multiple simultaneous quadrature measurements. Physical Review A, 2007, 75, .	2.5	83
82	Nuclear Quantum Optics with X-Ray Laser Pulses. Physical Review Letters, 2006, 96, 142501.	7.8	106
83	Light propagation through closed-loop atomic media beyond the multiphoton resonance condition. Physical Review A, 2006, 74, .	2.5	78
84	Quantum Interference Enforced by Time-Energy Complementarity. Physical Review Letters, 2006, 96, 100403.	7.8	54
85	Measurement of the separation between atoms beyond diffraction limit. Physical Review A, 2006, 73, .	2.5	46
86	Geometry-dependent dynamics of twoĥ-type atoms via vacuum-induced coherences. Physical Review A, 2006, 73, .	2.5	38
87	Dynamic nuclear Stark shift in superintense laser fields. Physical Review C, 2006, 74, .	2.9	28
88	Distilling two-atom distance information from intensity-intensity correlation functions. Physical Review A, 2006, 74, .	2.5	27
89	Interference in the resonance fluorescence of two incoherently coupled transitions. Physical Review A, 2006, 73, .	2.5	19
90	Quantum correlations of an atomic ensemble via an incoherent bath. Physical Review A, 2005, 72, .	2.5	21

71, . 2. antized laser field. 1.	5 2	5
antized laser field. 1.3		
	3 2	!
of Physics, 2005, 83, 1.	L 7	
n placed in an 1ysics, 2005, 38, 1.8	5 1	0
sics B: Atomic, 1.4	5 5	
	C)
s Letters, 2004, 68, 2.	0 7	
of Physics B: 1.3	5 8	
004, 70, . 2.:	5 1	6
7.8	8 8	
nping. Optics 2.	1 1	8
nysics Letters, 2.	1 2	1
, 233601. 7.1	8 6	1
601. 7.8	8 2	.9
w Letters, 2002, 89, 7.8	8 4	1
ser field. Physical 2.	5 1	1
tics 2.	1 4	·8
	of Physics, 2005, 83, 1.1 n placed in an nysics, 2005, 38, 1.1 sics B: Atomic, 1.1 sics B: Atomic, 1.1 j, 1.1 of Physics B: 1.1 004, 70, . 2.1 004, 70, . 2.1 nping. Optics 2.1 nysics Letters, 2.1 0.233601. 7.1 601. 7.3 w Letters, 2002, 89, 7.3 ser field. Physical 2.1 attics 2.1	of Physics, 2005, 83, 1.1 7 n placed in an hysics, 2005, 38, 1.5 1 sics B: Atomic, 1.5 5 si. 1.5 5 s. 2.0 7 of Physics B: 1.5 8 D04, 70, . 2.5 1 nping. Optics 2.1 1 nysics Letters, 2.1 2 of Physics B: 1.5 8 D04, 70, . 2.5 1 of Physics B: 1.5 8 D04, 70, . 2.5 1 of Physics Letters, 2.1 2 nysics Letters, 2.1 2 of Oll. 7.8 8 of Oll. 7.8 4 ser field. Physical 2.5 1 otics 2.5 1