
Yong You

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1371822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering measures for debris flow hazard mitigation in the Wenchuan earthquake area. Engineering Geology, 2015, 194, 73-85.	2.9	111
2	Assessment of debris-flow potential dangers in the Jiuzhaigou Valley following the August 8, 2017, Jiuzhaigou earthquake, western China. Engineering Geology, 2019, 256, 57-66.	2.9	61
3	Characteristics and hazard prediction of large-scale debris flow of Xiaojia Gully in Yingxiu Town, Sichuan Province, China. Engineering Geology, 2014, 180, 55-67.	2.9	48
4	Assessment of prospective hazards resulting from the 2017 earthquake at the world heritage site Jiuzhaigou Valley, Sichuan, China. Journal of Mountain Science, 2018, 15, 779-792.	0.8	45
5	The optimal cross-section design of the "Trapezoid-V―shaped drainage canal of viscous debris flow. Journal of Mountain Science, 2011, 8, 103-107.	0.8	28
6	Weights-of-evidence method based on GIS for assessing susceptibility to debris flows in Kangding County, Sichuan Province, China. Environmental Earth Sciences, 2016, 75, 1.	1.3	24
7	Case study on debris-flow hazard mitigation at a world natural heritage site, Jiuzhaigou Valley, Western China. Geomatics, Natural Hazards and Risk, 2020, 11, 1782-1804.	2.0	20
8	Activity and distribution of geohazards induced by the Lushan earthquake, April 20, 2013. Natural Hazards, 2014, 73, 711-726.	1.6	17
9	Characteristics of a Debris Flow Disaster and Its Mitigation Countermeasures in Zechawa Gully, Jiuzhaigou Valley, China. Water (Switzerland), 2020, 12, 1256.	1.2	17
10	Experimental study on characteristics of trapping and regulating sediment with an open-type check dam in debris flow hazard mitigation. Journal of Mountain Science, 2018, 15, 2001-2012.	0.8	16
11	The siltation of debris flow behind check dam in the midstream of Bailong River. Journal of Mountain Science, 2018, 15, 100-113.	0.8	12
12	Debris flow formation conditions and optimal characteristics of drainage canal following Wenchuan earthquake. Environmental Earth Sciences, 2012, 65, 1005-1012.	1.3	11
13	Experimental study on discharge process regulation to debris flow with open-type check dams. Landslides, 2021, 18, 967-978.	2.7	11
14	Spatial-temporal distribution of debris flow impact pressure on rigid barrier. Journal of Mountain Science, 2019, 16, 793-805.	0.8	9
15	Superelevation analysis of the debris flow curve in Xiedi gully, China. Bulletin of Engineering Geology and the Environment, 2021, 80, 967-978.	1.6	6
16	Experimental Study of the Debris Flow Slurry Impact and Distribution. Shock and Vibration, 2018, 2018, 1-15.	0.3	4
17	Superelevation Calculation of Debris Flow Climbing Ascending Slopes. Mathematical Problems in Engineering, 2017, 2017, 1-9.	0.6	3
18	Experimental investigation of blocking and discharge regulation function of window-frame dam in viscous debris flow control. Geomatics, Natural Hazards and Risk, 2020, 11, 1505-1527.	2.0	2

Yong You

#	Article	IF	CITATIONS
19	Quantitative investigation of sediment regulation performance of slot-check dam on viscous debris flow. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	2
20	Calculation of the ultimate depth of a scour pit after debris flow through drainage canal ribs. Journal of Mountain Science, 2016, 13, 246-254.	0.8	1
21	Application of incomplete similarity theory to the estimation of the mean velocity of debris flows. Landslides, 2018, 15, 2083-2091.	2.7	1
22	A calculation model to assess the crack propagation length of rock block in clastic flow. Journal of Mountain Science, 2020, 17, 2636-2651.	0.8	1
23	Numerical simulation for viscous debris flows passing through dams—a case study of the Wenchuan Yinxingping gully. Landslides, 2021, 18, 3255-3267.	2.7	1
24	Experimental study on the discharge characteristics of viscous debris flow with grid-type dam. Environmental Fluid Mechanics, 2021, 21, 1253-1271.	0.7	0
25	Stability analysis of check dam impacted by intermittent surge. Bulletin of Engineering Geology and the Environment, 2022, 81, .	1.6	0
26	Improving the evaluation of the blockade behavior of open check dams: a small-scale physical modeling. Bulletin of Engineering Geology and the Environment, 2022, 81, .	1.6	0