
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1371283/publications.pdf Version: 2024-02-01

Νίινο Γλάλ

#	Article	IF	CITATIONS
1	Multi-component adsorption study by using bone char: modelling and removal mechanisms. Environmental Technology (United Kingdom), 2022, 43, 789-804.	2.2	11
2	Evaluation of activated carbons produced from Maize Cob Waste for adsorption-based CO2 separation and biogas upgrading. Journal of Environmental Chemical Engineering, 2022, 10, 107065.	6.7	24
3	BioH2 from Dark Fermentation of OFMSW: Effect of the Hydraulic Retention Time and Organic Loading Rate. Applied Sciences (Switzerland), 2022, 12, 4240.	2.5	4
4	Biomass Valorization to Produce Porous Carbons: Applications in CO2 Capture and Biogas Upgrading to Biomethane—A Mini-Review. Frontiers in Energy Research, 2021, 9, .	2.3	27
5	Life Cycle and Economic Analyses of the Removal of Pesticides and Pharmaceuticals from Municipal Wastewater by Anodic Oxidation. Sustainability, 2021, 13, 3669.	3.2	7
6	Nanoporous carbons prepared from argan nutshells as potential removal agents of diclofenac and paroxetine. Journal of Molecular Liquids, 2021, 326, 115368.	4.9	20
7	Highly efficient porous carbons for the removal of W(VI) oxyanion from wastewaters. Journal of Hazardous Materials, 2021, 412, 125201.	12.4	6
8	Life cycle analysis of a biorefinery for activated carbon and biomethane production. Biomass and Bioenergy, 2021, 149, 106080.	5.7	7
9	Beneficial and detrimental effects of choline chloride–oxalic acid deep eutectic solvent on biogas production. Waste Management, 2021, 131, 368-375.	7.4	9
10	Aveiro Canyon Head (Portugal) Submarine Slope Instability Assessment. Applied Sciences (Switzerland), 2020, 10, 9038.	2.5	1
11	Activation of co-pyrolysis chars from rice wastes to improve the removal of Cr3+ from simulated and real industrial wastewaters. Journal of Cleaner Production, 2020, 267, 121993.	9.3	20
12	Porous carbons derived from hydrothermally treated biogas digestate. Waste Management, 2020, 105, 170-179.	7.4	20
13	Assessment of potato peel and agro-forestry biochars supplementation on in vitro ruminal fermentation. PeerJ, 2020, 8, e9488.	2.0	2
14	Evaluation of the adsorption potential of biochars prepared from forest and agri-food wastes for the removal of fluoxetine. Bioresource Technology, 2019, 292, 121973.	9.6	44
15	Biomethane production through anaerobic co-digestion with Maize Cob Waste based on a biorefinery concept: A review. Journal of Environmental Management, 2019, 249, 109351.	7.8	22
16	New adsorbents from maize cob wastes and anaerobic digestate for H2S removal from biogas. Waste Management, 2019, 94, 136-145.	7.4	41
17	Recovery of Cr(III) by using chars from the co-gasification of agriculture and forestry wastes. Environmental Science and Pollution Research, 2019, 26, 22723-22735.	5.3	7
18	Char from Spent Tire Rubber: A Potential Adsorbent of Remazol Yellow Dye. Journal of Carbon Research, 2019, 5, 76.	2.7	7

#	Article	IF	CITATIONS
19	Maize cob waste pre-treatments to enhance biogas production through co-anaerobic digestion with OFMSW. Waste Management, 2018, 72, 193-205.	7.4	24
20	Cr(III) removal from synthetic and industrial wastewaters by using co-gasification chars of rice waste streams. Bioresource Technology, 2018, 266, 139-150.	9.6	29
21	Properties of chars from the gasification and pyrolysis of rice waste streams towards their valorisation as adsorbent materials. Waste Management, 2017, 65, 186-194.	7.4	32
22	Study of the removal mechanism of aquatic emergent pollutants by new bio-based chars. Environmental Science and Pollution Research, 2017, 24, 22698-22708.	5.3	12
23	Adding value to gasification and co-pyrolysis chars as removal agents of Cr3+. Journal of Hazardous Materials, 2017, 321, 173-182.	12.4	25
24	High efficacy on diclofenac removal by activated carbon produced from potato peel waste. International Journal of Environmental Science and Technology, 2016, 13, 1989-2000.	3.5	70
25	Biomass fly ashes as low-cost chemical agents for Pb removal from synthetic and industrial wastewaters. Journal of Colloid and Interface Science, 2014, 424, 27-36.	9.4	17
26	Slagging and Fouling during Coal and Biomass Cofiring: Chemical Equilibrium Model Applied to FBC. Energy & Fuels, 2014, 28, 697-713.	5.1	12
27	Leaching behaviour and ecotoxicity evaluation of chars from the pyrolysis of forestry biomass and polymeric materials. Ecotoxicology and Environmental Safety, 2014, 107, 9-15.	6.0	17
28	Removal of lead (Pb2+) from aqueous medium by using chars from co-pyrolysis. Journal of Colloid and Interface Science, 2013, 409, 158-165.	9.4	42
29	Analytical methods and validation for determining trace elements in red wines. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2013, 48, 364-375.	1.5	11
30	Chemical and ecotoxicological properties of size fractionated biomass ashes. Fuel Processing Technology, 2013, 109, 124-132.	7.2	26
31	Concretes containing biomass ashes: Mechanical, chemical, and ecotoxic performances. Construction and Building Materials, 2013, 48, 457-463.	7.2	67
32	Removal of phosphorus from wastewaters by biomass ashes. Water Science and Technology, 2013, 68, 2019-2027.	2.5	7
33	Study of the Organic Extraction and Acidic Leaching of Chars Obtained in the Pyrolysis of Plastics, Tire Rubber and Forestry Biomass Wastes. Procedia Engineering, 2012, 42, 1739-1746.	1.2	10
34	Use of chemical fractionation to understand partitioning of biomass ash constituents during co-firing in fluidized bed combustion. Fuel, 2012, 101, 215-227.	6.4	21
35	Uncertainty estimation to evaluate mass balances on a combustion system. Accreditation and Quality Assurance, 2012, 17, 159-166.	0.8	4
36	Chemical and ecotoxicological properties of ashes produced in the co-combustion of coal and meat and bone meal in a fluidized bed reactor. Fuel Processing Technology, 2012, 96, 48-55.	7.2	3

#	Article	IF	CITATIONS
37	Evaluation of slagging and fouling tendency during biomass co-firing with coal in a fluidized bed. Biomass and Bioenergy, 2012, 39, 192-203.	5.7	160
38	Characterization of chars produced in the co-pyrolysis of different wastes: Decontamination study. Journal of Hazardous Materials, 2012, 207-208, 28-35.	12.4	20
39	Physico-chemical properties of chars obtained in the co-pyrolysis of waste mixtures. Journal of Hazardous Materials, 2012, 219-220, 196-202.	12.4	78
40	Environmental and socio-economic assessment of co-combustion of coal, biomass and non-hazardous wastes in a Power Plant. Resources, Conservation and Recycling, 2011, 55, 1109-1118.	10.8	18
41	Stabilization/solidification of fly ashes and concrete production from bottom and circulating ashes produced in a power plant working under mono and co-combustion conditions. Waste Management, 2011, 31, 2009-2019.	7.4	18
42	Toxicity of char residues produced in the co-pyrolysis of different wastes. Waste Management, 2010, 30, 628-635.	7.4	41
43	Determination of alkylphenols in eluates from pyrolysis solid residues using dispersive liquid–liquid microextraction. Chemosphere, 2010, 79, 1026-1032.	8.2	21
44	Study of the co-pyrolysis of biomass and plastic wastes. Clean Technologies and Environmental Policy, 2009, 11, 115-122.	4.1	111
45	Chemical and ecotoxicological characterization of solid residues produced during the co-pyrolysis of plastics and pine biomass. Journal of Hazardous Materials, 2009, 166, 309-317.	12.4	23
46	Co-combustion of coal and sewage sludge: Chemical and ecotoxicological properties of ashes. Journal of Hazardous Materials, 2009, 170, 902-909.	12.4	68
47	Determination of aromatic compounds in eluates of pyrolysis solid residues using HS-GC–MS and DLLME–GC–MS. Talanta, 2009, 80, 104-108.	5.5	22
48	Chemical and ecotoxicological characterization of ashes obtained from sewage sludge combustion in a fluidised-bed reactor. Journal of Hazardous Materials, 2007, 147, 175-183.	12.4	59
49	Leaching Behaviour of a Glass Produced from a MSWI Bottom Ash. Materials Science Forum, 2006, 514-516, 1736-1741.	0.3	9
50	The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed. Waste Management, 2003, 23, 859-870.	7.4	75
51	An ecotoxic risk assessment of residue materials produced by the plasma pyrolysis/vitrification (PP/V) process. Waste Management, 2002, 22, 335-342.	7.4	42
52	Ecotoxicological assessment of leachates from MSWI bottom ashes. Waste Management, 2002, 22, 583-593.	7.4	77
53	Sanitary quality of sands from beaches of azores islands. Water Science and Technology, 1997, 35, 147.	2.5	17
54	Re-use of industrial orange wastes as organic fertilizers. Bioresource Technology, 1995, 53, 43-51.	9.6	38

#	Article	IF	CITATIONS
55	Efficiency of removal in stabilization ponds I. Influence of climate. Water Science and Technology, 1995, 31, 219.	2.5	3
56	Efficiency of removal in stabilization ponds ii. statistical analysis of k values. Water Science and Technology, 1995, 31, 231.	2.5	1
57	Ecoclimatic influence on waste stabilization ponds (WSP) efficiencies. Case study of the sesimbra system. Water Science and Technology, 1994, 30, 269-279.	2.5	1
58	Using Biomass Ashes in Concretes Exposed to Salted Water and Freshwater: Mechanical and Chemical Properties. Advanced Materials Research, 0, 587, 16-20.	0.3	0
59	Quality of ashes produced in the co-combustion of coal and MBM in a fluidized bed reactor. Renewable Energy and Power Quality Journal, 0, , 1004-1008.	0.2	Ο