
Ron Barron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1370641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generation and characterization of fully developed state in open channel flow. Journal of Fluid Mechanics, 2022, 934, .	3.4	6
2	Effect of free surface perturbation on fully developed smooth open channel flow. Journal of Hydraulic Research/De Recherches Hydrauliques, 2022, 60, 363-375.	1.7	1
3	Particle image velocimetry evaluation of flow-altering countermeasures for local scour around a submerged circular cylinder. International Journal of Sediment Research, 2022, , .	3.5	2
4	Characteristics of self-oscillating twin jets. Physics of Fluids, 2021, 33, .	4.0	9
5	Supercritical flow characteristics in smooth open channels with different aspect ratios. Physics of Fluids, 2020, 32, .	4.0	15
6	Characteristics of self-oscillating jets in a confined cavity. Physics of Fluids, 2020, 32, .	4.0	11
7	Analysis of the ground effect on development of flow structures around an inclined solar panel. Environmental Fluid Mechanics, 2020, 20, 1463-1489.	1.6	5
8	Closure to "Turbulence Characteristics of Classical Hydraulic Jump Using DES―by Vimaldoss Jesudhas, Ram Balachandar, Vesselina Roussinova, and Ron Barron. Journal of Hydraulic Engineering, 2020, 146, 07020012.	1.5	3
9	Numerical investigation of conjugate heat transfer in a straight cooling channel. AIP Conference Proceedings, 2020, , .	0.4	0
10	A mapped-stencil finite difference scheme for the convection-diffusion equation on an arbitrary mesh. AIP Conference Proceedings, 2020, , .	0.4	0
11	Influence of bed proximity on the three-dimensional characteristics of the wake of a sharp-edged bluff body. Physics of Fluids, 2019, 31, .	4.0	15
12	Turbulence structure of a counter-flowing wall jet. Physics of Fluids, 2019, 31, .	4.0	22
13	Effect of gap on the flow characteristics in the wake of a bluff body near a wall. International Journal of Computational Methods and Experimental Measurements, 2019, 7, 305-315.	0.2	4
14	Turbulence Characteristics of Classical Hydraulic Jump Using DES. Journal of Hydraulic Engineering, 2018, 144, .	1.5	28
15	Conjugate analysis of wall conduction effects on the thermal characteristics of impinging jets. International Journal of Heat and Mass Transfer, 2018, 116, 259-272.	4.8	13
16	Reconsideration of the overlap region in smooth shallow open channel flows. Canadian Journal of Civil Engineering, 2017, 44, 161-173.	1.3	3
17	Characteristics of flow past a slender, emergent cylinder in shallow open channels. Physics of Fluids, 2017, 29, .	4.0	17
18	Submerged Hydraulic Jump Study Using DES. Journal of Hydraulic Engineering, 2017, 143, .	1.5	19

RON BARRON

#	Article	IF	CITATIONS
19	Development of vortex structures in the wake of a sharp-edged bluff body. Physics of Fluids, 2017, 29, .	4.0	10
20	Round impinging jets with relatively large stand-off distance. Physics of Fluids, 2016, 28, .	4.0	18
21	Large eddy simulation of the near-field vortex dynamics in starting square jet transitioning into steady state. Physics of Fluids, 2016, 28, .	4.0	16
22	Mean characteristics of fluid structures in shallow-wake flows. International Journal of Multiphase Flow, 2016, 82, 74-85.	3.4	8
23	CFD Analysis of Heat Transfer Due to Jet Impingement Onto a Heated Disc Bounded by a Cylindrical Wall. Heat Transfer Engineering, 2016, 37, 1507-1520.	1.9	6
24	Characteristics of Flow Structures in the Wake of a Bed-Mounted Bluff Body in Shallow Open Channels. Journal of Fluids Engineering, Transactions of the ASME, 2015, 137, .	1.5	9
25	Simulation of jet impingement heat transfer onto a moving disc. International Journal of Heat and Mass Transfer, 2015, 80, 539-550.	4.8	19
26	Reynolds number effects in the near-field of a turbulent square jet. Experimental Thermal and Fluid Science, 2015, 61, 249-258.	2.7	37
27	Heat Transfer Due to an Impinging Jet in a Confined Space. Journal of Heat Transfer, 2014, 136, .	2.1	13
28	DES evaluation of near-wake characteristics in a shallow flow. Journal of Fluids and Structures, 2014, 45, 153-163.	3.4	18
29	Spray-induced air motion in single and twin ultra-high injection diesel sprays. Fuel, 2014, 121, 284-297.	6.4	47
30	Detached eddy simulation of flow past an isolated inclined solar panel. Journal of Fluids and Structures, 2014, 50, 217-230.	3.4	28
31	Numerical simulation of wind loading on ground-mounted solar panels at different flow configurations. Canadian Journal of Civil Engineering, 2014, 41, 728-738.	1.3	61
32	CFD analysis of the effect of nozzle stand-off distance on turbulent impinging jets. Canadian Journal of Civil Engineering, 2013, 40, 603-612.	1.3	13
33	CFD Study of Effects of Geometry Variations on Flow in a Nozzle. Engineering Applications of Computational Fluid Mechanics, 2012, 6, 412-425.	3.1	15
34	Velocity–pressure coupling in finite difference formulations for the Navier–Stokes equations. International Journal for Numerical Methods in Fluids, 2011, 65, 1096-1114.	1.6	3
35	Cell-Centred Finite Difference Methodology for Solving Partial Differential Equations on an Unstructured Mesh. , 2011, , .		0
36	A Cell-Based Finite Difference Method for the Numerical Solution of PDEs. , 2011, , .		0

Ron Barron

#	Article	IF	CITATIONS
37	Numerical simulation of high-speed turbulent water jets in air. Journal of Hydraulic Research/De Recherches Hydrauliques, 2010, 48, 119-124.	1.7	37
38	Reynolds Number Effects on the Near-Exit Region of Turbulent Jets. Journal of Hydraulic Engineering, 2010, 136, 633-641.	1.5	14
39	Effects of under-relaxation factors on turbulent flow simulations. International Journal for Numerical Methods in Fluids, 2003, 42, 923-928.	1.6	12
40	Transonic flow computations using streamfunction and potential function. Communications in Numerical Methods in Engineering, 1995, 11, 585-595.	1.3	0
41	STREAMFUNCTION COORDINATE FORMULATION FOR ONE-DIMENSIONAL UNSTEADY FLOW. Mathematical Models and Methods in Applied Sciences, 1995, 05, 401-414.	3.3	2
42	The double von Mises transformation in the study of two-phase fluid flow over curved boundaries: Theory and analysis. International Journal for Numerical Methods in Fluids, 1992, 14, 883-905.	1.6	5
43	Numerical solution of transonic full-potential-equivalent equations in von Mises co-ordinates. International Journal for Numerical Methods in Fluids, 1992, 15, 925-952.	1.6	4
44	Axisymmetric potential flow calculations. Part 2: Design mode. Communications in Applied Numerical Methods, 1991, 7, 563-567.	0.5	2
45	Axisymmetric potential flow calculations. Part 1: Analysis mode. Communications in Applied Numerical Methods, 1990, 6, 437-445.	0.5	5
46	A non-iterative technique for design of aerofoils in incompressible potential flow. Communications in Applied Numerical Methods, 1990, 6, 557-564.	0.5	8
47	Lifting aerofoil calculations using von Mises variables. Communications in Applied Numerical Methods, 1989, 5, 203-210.	0.5	Ο
48	Numerical solution of transonic flows on a streamfunction co-ordinate system. International Journal for Numerical Methods in Fluids, 1989, 9, 1183-1193.	1.6	11
49	Shear-Driven Flow in a Porous Cavity. Journal of Fluids Engineering, Transactions of the ASME, 1989, 111, 433-438.	1.5	2
50	A new approach to the solution of the Navier-Stokes equations. International Journal for Numerical Methods in Fluids, 1987, 7, 1315-1324.	1.6	2
51	Hodograph transformations and solutions in variably inclined MHD plane flows. Journal of Engineering Mathematics, 1982, 16, 223-243.	1.2	10
52	Newtonian flow theory for slender bodies in a dusty gas. Journal of Fluid Mechanics, 1981, 108, 147-157.	3.4	14