
Muhammad Adly Rahandi Lubis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1370096/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Developments in Lignin- and Tannin-Based Non-Isocyanate Polyurethane Resins for Wood Adhesives—A Review. Applied Sciences (Switzerland), 2021, 11, 4242.	1.3	83
2	Recent progress in ultra-low formaldehyde emitting adhesive systems and formaldehyde scavengers in wood-based panels: a review. Wood Material Science and Engineering, 2023, 18, 763-782.	1.1	80
3	Converting crystalline thermosetting urea–formaldehyde resins to amorphous polymer using modified nanoclay. Journal of Industrial and Engineering Chemistry, 2020, 87, 78-89.	2.9	50
4	Recent developments in lignin modification and its application in ligninâ€based green composites: A review. Polymer Composites, 2022, 43, 4848-4865.	2.3	50
5	Recent Advances in the Development of Fire-Resistant Biocomposites—A Review. Polymers, 2022, 14, 362.	2.0	47
6	Lignin as Green Filler in Polymer Composites: Development Methods, Characteristics, and Potential Applications. Advances in Materials Science and Engineering, 2022, 2022, 1-33.	1.0	43
7	A Comprehensive Review on Natural Fibers: Technological and Socio-Economical Aspects. Polymers, 2021, 13, 4280.	2.0	42
8	Lignin as an Active Biomaterial: A Review. Jurnal Sylva Lestari, 2021, 9, 1.	0.2	39
9	Modification of urea-formaldehyde resin adhesives with blocked isocyanates using sodium bisulfite. International Journal of Adhesion and Adhesives, 2017, 73, 118-124.	1.4	33
10	Enhancing Thermal and Mechanical Properties of Ramie Fiber via Impregnation by Lignin-Based Polyurethane Resin. Materials, 2021, 14, 6850.	1.3	33
11	Modification of urea-formaldehyde resin adhesives with oxidized starch using blocked pMDI for plywood. Journal of Adhesion Science and Technology, 2018, 32, 2667-2681.	1.4	32
12	Bio-Based Polyurethane Resins Derived from Tannin: Source, Synthesis, Characterisation, and Application. Forests, 2021, 12, 1516.	0.9	30
13	Hydrolytic Removal of Cured Urea–Formaldehyde Resins in Medium-Density Fiberboard for Recycling. Journal of Wood Chemistry and Technology, 2018, 38, 1-14.	0.9	29
14	Influence of Initial Molar Ratios on the Performance of Low Molar Ratio Urea-Formaldehyde Resin Adhesives. Journal of the Korean Wood Science and Technology, 2020, 48, 136-153.	0.8	28
15	The properties of particleboard composites made from three sorghum (Sorghum bicolor) accessions using maleic acid adhesive. Chemosphere, 2022, 290, 133163.	4.2	28
16	Performance of Hybrid Adhesives of Blocked-pMDI/Melamine-Urea-Formaldehyde Resins for the Surface Lamination on Plywood. Journal of the Korean Wood Science and Technology, 2019, 47, 200-209.	0.8	27
17	Enhancing the performance of low molar ratio urea–formaldehyde resin adhesives via in-situ modification with intercalated nanoclay. Journal of Adhesion, 2021, 97, 1271-1290.	1.8	26
18	Analysis of the hydrolysates from cured and uncured urea-formaldehyde (UF) resins with two F/U mole ratios. Holzforschung, 2018, 72, 759-768.	0.9	25

Muhammad Adly Rahandi

#	Article	IF	CITATIONS
19	Microencapsulation of polymeric isocyanate for the modification of urea-formaldehyde resins. International Journal of Adhesion and Adhesives, 2020, 100, 102599.	1.4	25
20	Physical and Chemical Properties of Acacia mangium Lignin Isolated from Pulp Mill Byproduct for Potential Application in Wood Composites. Polymers, 2022, 14, 491.	2.0	25
21	Effects of recycled fiber content on the properties of medium density fiberboard. European Journal of Wood and Wood Products, 2018, 76, 1515-1526.	1.3	24
22	Effect of Synthesis Method and Melamine Content of Melamine-Urea-Formaldehyde Resins on Bond-Line Features in Plywood. Journal of the Korean Wood Science and Technology, 2019, 47, 579-586.	0.8	22
23	Tuning of adhesion and disintegration of oxidized starch adhesives for the recycling of medium density fiberboard. BioResources, 2020, 15, 5156-5178.	0.5	21
24	Influence of Lignin Content and Pressing Time on Plywood Properties Bonded with Cold-Setting Adhesive Based on Poly (Vinyl Alcohol), Lignin, and Hexamine. Polymers, 2022, 14, 2111.	2.0	21
25	Effects of surface laminate type and recycled fiber content on properties of three-layer medium density fiberboard. Wood Material Science and Engineering, 2020, 15, 163-171.	1.1	20
26	<i>In-situ</i> modification of low molar ratio urea–formaldehyde resins with cellulose nanofibrils for plywood. Journal of Adhesion Science and Technology, 2021, 35, 2452-2465.	1.4	20
27	Modification of Oxidized Starch Polymer with Nanoclay for Enhanced Adhesion and Free Formaldehyde Emission of Plywood. Journal of Polymers and the Environment, 2021, 29, 2993-3003.	2.4	17
28	Thermal and mechanical performance of ramie fibers modified with polyurethane resins derived from acacia mangium bark tannin. Journal of Materials Research and Technology, 2022, 18, 2413-2427.	2.6	17
29	Modification of Ramie Fiber via Impregnation with Low Viscosity Bio-Polyurethane Resins Derived from Lignin. Polymers, 2022, 14, 2165.	2.0	17
30	Performance of ecoâ€friendly particleboard from agroâ€industrial residues bonded with formaldehydeâ€free natural rubber latex adhesive for interior applications. Polymer Composites, 2022, 43, 2222-2233.	2.3	15
31	Influence of different hot-pressing conditions on the performance of eco-friendly jabon plywood bonded with citric acid adhesive. Wood Material Science and Engineering, 2022, 17, 400-409.	1.1	14
32	Effects of nanoclay modification with transition metal ion on the performance of urea–formaldehyde resin adhesives. Polymer Bulletin, 2021, 78, 2375-2388.	1.7	13
33	Simultaneous Improvement of Formaldehyde Emission and Adhesion of Medium-Density Fiberboard Bonded with Low-Molar Ratio Urea-Formaldehyde Resins Modified with Nanoclay. Journal of the Korean Wood Science and Technology, 2021, 49, 453-461.	0.8	12
34	Tailoring of oxidized starch's adhesion using crosslinker and adhesion promotor for the recycling of fiberboards. Journal of Applied Polymer Science, 2019, 136, 47966.	1.3	9
35	Ambient curable natural rubber latex adhesive cross-linked with polymeric isocyanate for bonding wood. Polymer Bulletin, 0, , 1.	1.7	9
36	Effect of cold-water treatment and hydrothermal carbonization of oil-palm-trunk fibers on compatibility with cement for the preparation of cement-bonded particleboard. Wood Material Science and Engineering, 2022, 17, 979-988.	1.1	8

Muhammad Adly Rahandi

#	Article	IF	CITATIONS
37	Enhancing the performance of natural rubber latex with polymeric isocyanate as cold-pressing and formaldehyde free adhesive for plywood. Journal of Adhesion, 2023, 99, 58-73.	1.8	8
38	Conversion of agro-industrial wastes of sorghum bagasse and molasses into lightweight roof tile composite. Biomass Conversion and Biorefinery, 2024, 14, 1001-1015.	2.9	8
39	Bio-Polyurethane Resins Derived from Liquid Fractions of Lignin for the Modification of Ramie Fibers. Jurnal Sylva Lestari, 2021, 9, 223.	0.2	7
40	Characterization of Indonesian Banana Species as an Alternative Cellulose Fibers. Journal of Natural Fibers, 2022, 19, 14396-14413.	1.7	7
41	A Comprehensive Review on Process and Technological Aspects of Wood-Plastic Composites. Jurnal Sylva Lestari, 2021, 9, 329.	0.2	6
42	The Removal of Cured Urea-Formaldehyde Adhesive towards Sustainable Medium Density Fiberboard Production: A Review. Jurnal Sylva Lestari, 2021, 9, 23.	0.2	6
43	Modification of nanoclay with different methods and its application in urea-formaldehyde bonded plywood panels. Wood Material Science and Engineering, 2022, 17, 734-743.	1.1	5
44	Utilization of Lignin from the Waste of Bioethanol Production as a Mortar Additive. Jurnal Sylva Lestari, 2020, 8, 326.	0.2	4
45	Visual inspection of surface mold growth on medium-density fiberboard bonded with oxidized starch adhesives. Wood Material Science and Engineering, 2023, 18, 819-826.	1.1	4
46	Effects of Hydrolysis on the Removal of Cured Urea-Formaldehyde Adhesive in Waste Medium-Density Fiberboard. Jurnal Sylva Lestari, 2020, 8, 1.	0.2	2
47	Effects of Strands Pre-treatment and Adhesive Type on the Properties of Oriented Strand Board Made from Gmelina (Gmelina arborea) Wood. Jurnal Sylva Lestari, 2021, 9, 475-487.	0.2	2
48	Effects of Resin Content on the Characteristics of Bamboo Oriented Strand Board Prepared from Strands of Betung, Ampel, and Their Mixtures. Jurnal Sylva Lestari, 2021, 9, 454-465.	0.2	2