Chaodan Pu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/13699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthetic Control of Exciton Behavior in Colloidal Quantum Dots. Journal of the American Chemical Society, 2017, 139, 3302-3311.	13.7	198
2	To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment. Journal of the American Chemical Society, 2016, 138, 8134-8142.	13.7	192
3	Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nature Communications, 2020, 11, 937.	12.8	184
4	Highâ€Performance, Solutionâ€Processed, and Insulating‣ayerâ€Free Lightâ€Emitting Diodes Based on Colloidal Quantum Dots. Advanced Materials, 2018, 30, e1801387.	21.0	151
5	Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS). Nano Research, 2013, 6, 652-670.	10.4	121
6	Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nature Communications, 2017, 8, 1132.	12.8	105
7	Temperature- and Mn ²⁺ Concentration-Dependent Emission Properties of Mn ²⁺ -Doped ZnSe Nanocrystals. Journal of the American Chemical Society, 2019, 141, 2288-2298.	13.7	102
8	A Two-Step Synthetic Strategy toward Monodisperse Colloidal CdSe and CdSe/CdS Core/Shell Nanocrystals. Journal of the American Chemical Society, 2016, 138, 6475-6483.	13.7	92
9	Doped Semiconductor-Nanocrystal Emitters with Optimal Photoluminescence Decay Dynamics in Microsecond to Millisecond Range: Synthesis and Applications. ACS Central Science, 2016, 2, 32-39.	11.3	75
10	Formation of Size-Tunable and Nearly Monodisperse InP Nanocrystals: Chemical Reactions and Controlled Synthesis. Chemistry of Materials, 2019, 31, 5331-5341.	6.7	62
11	One-pot/three-step synthesis of zinc-blende CdSe/CdS core/shell nanocrystals with thick shells. Nano Research, 2017, 10, 1149-1162.	10.4	56
12	Visible-Light Photocatalytic Synthesis of Amines from Imines via Transfer Hydrogenation Using Quantum Dots as Catalysts. Journal of Organic Chemistry, 2018, 83, 11886-11895.	3.2	47
13	Surface activation of colloidal indium phosphide nanocrystals. Nano Research, 2017, 10, 941-958.	10.4	39
14	Surface and intrinsic contributions to extinction properties of ZnSe quantum dots. Nano Research, 2020, 13, 824-831.	10.4	34
15	On-Surface Reactions in the Growth of High-Quality CdSe Nanocrystals in Nonpolar Solutions. Journal of the American Chemical Society, 2018, 140, 9174-9183.	13.7	33
16	Facetâ€Dependent On‣urface Reactions in the Growth of CdSe Nanoplatelets. Angewandte Chemie - International Edition, 2019, 58, 17764-17770.	13.8	28
17	CdSe@CdS Dot@Platelet Nanocrystals: Controlled Epitaxy, Monoexponential Decay of Two-Dimensional Exciton, and Nonblinking Photoluminescence of Single Nanocrystal. Journal of the American Chemical Society, 2019, 141, 17617-17628.	13.7	25
18	Visible Light Induced Reduction and Pinacol Coupling of Aldehydes and Ketones Catalyzed by Core/Shell Quantum Dots. Journal of Organic Chemistry, 2021, 86, 2474-2488.	3.2	17

Chaodan Pu

#	Article	IF	CITATIONS
19	Efficient quasi-stationary charge transfer from quantum dots to acceptors physically-adsorbed in the ligand monolayer. Nano Research, 2022, 15, 617-626.	10.4	13
20	Delocalized Surface Electronic States on Polar Facets of Semiconductor Nanocrystals. ACS Nano, 2020, 14, 16614-16623.	14.6	10
21	Plasmonic Metal Oxide Nanocrystals via Surface Anchoring of Redox-Active Phosphorus Species. Chemistry of Materials, 2021, 33, 5290-5297.	6.7	3
22	Coherent modulation of two-photon up-conversion from colloidal quantum dots by femtosecond laser. RSC Advances, 2015, 5, 80998-81002.	3.6	1
23	Facetâ€Dependent Onâ€5urface Reactions in the Growth of CdSe Nanoplatelets. Angewandte Chemie, 2019, 131, 17928-17934.	2.0	1
24	Size focusing of colloidal quantum dots under high monomer concentration. Nano Research, 2022, 15, 7622-7630.	10.4	1