Christian MÃ¹/₄ller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1369849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermoelectric plastics: from design to synthesis, processing and structure–property relationships. Chemical Society Reviews, 2016, 45, 6147-6164.	38.1	458
2	Binary Organic Photovoltaic Blends: A Simple Rationale for Optimum Compositions. Advanced Materials, 2008, 20, 3510-3515.	21.0	364
3	Thermoelectrics: From history, a window to the future. Materials Science and Engineering Reports, 2019, 138, 100501.	31.8	341
4	Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold. Nature Materials, 2006, 5, 950-956.	27.5	302
5	The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Progress in Polymer Science, 2013, 38, 1978-1989.	24.7	274
6	Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor. Energy and Environmental Science, 2013, 6, 918.	30.8	258
7	Double doping of conjugated polymers with monomer molecular dopants. Nature Materials, 2019, 18, 149-155.	27.5	225
8	Enhanced n-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectrics. ACS Energy Letters, 2018, 3, 278-285.	17.4	220
9	Tough, Semiconducting Polyethyleneâ€poly(3â€hexylthiophene) Diblock Copolymers. Advanced Functional Materials, 2007, 17, 2674-2679.	14.9	201
10	On the Glass Transition of Polymer Semiconductors and Its Impact on Polymer Solar Cell Stability. Chemistry of Materials, 2015, 27, 2740-2754.	6.7	198
11	Polar Side Chains Enhance Processability, Electrical Conductivity, and Thermal Stability of a Molecularly pâ€Doped Polythiophene. Advanced Materials, 2017, 29, 1700930.	21.0	193
12	Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles. ACS Applied Materials & Interfaces, 2017, 9, 9045-9050.	8.0	183
13	Electrically conducting fibres for e-textiles: An open playground for conjugated polymers and carbon nanomaterials. Materials Science and Engineering Reports, 2018, 126, 1-29.	31.8	172
14	Crystallineâ~'Crystalline Block Copolymers of Regioregular Poly(3-hexylthiophene) and Polyethylene by Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society, 2005, 127, 12502-12503.	13.7	155
15	Doping Approaches for Organic Semiconductors. Chemical Reviews, 2022, 122, 4420-4492.	47.7	153
16	Woven Electrochemical Transistors on Silk Fibers. Advanced Materials, 2011, 23, 898-901.	21.0	149
17	Enhanced Electrical Conductivity of Molecularly p-Doped Poly(3-hexylthiophene) through Understanding the Correlation with Solid-State Order. Macromolecules, 2017, 50, 8140-8148.	4.8	135
18	Highly Efficient Ruddlesden–Popper Halide Perovskite PA ₂ MA ₄ Pb ₅ 16 Solar Cells. ACS Energy Letters, 2018, 3, 1975-1982.	17.4	135

2

Christian MÃ¹/4ller

#	Article	IF	CITATIONS
19	Enhanced Photovoltaic Performance of Indacenodithiopheneâ€Quinoxaline Copolymers by Sideâ€Chain Modulation. Advanced Energy Materials, 2014, 4, 1400680.	19.5	134
20	Influence of Molecular Weight on the Performance of Organic Solar Cells Based on a Fluorene Derivative. Advanced Functional Materials, 2010, 20, 2124-2131.	14.9	124
21	Energy harvesting textiles for a rainy day: woven piezoelectrics based on melt-spun PVDF microfibres with a conducting core. Npj Flexible Electronics, 2018, 2, .	10.7	114
22	Ground-state electron transfer in all-polymer donor–acceptor heterojunctions. Nature Materials, 2020, 19, 738-744.	27.5	111
23	A New Application Area for Fullerenes: Voltage Stabilizers for Power Cable Insulation. Advanced Materials, 2015, 27, 897-902.	21.0	110
24	Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells. Energy and Environmental Science, 2014, 7, 361-369.	30.8	108
25	Role of Ultrafast Torsional Relaxation in the Emission from Polythiophene Aggregates. Journal of Physical Chemistry Letters, 2010, 1, 2788-2792.	4.6	90
26	Photoinduced p―to nâ€ŧype Switching in Thermoelectric Polymer arbon Nanotube Composites. Advanced Materials, 2016, 28, 2782-2789.	21.0	89
27	A polymer-based textile thermoelectric generator for wearable energy harvesting. Journal of Power Sources, 2020, 480, 228836.	7.8	88
28	Conformational Disorder Enhances Solubility and Photovoltaic Performance of a Thiophene–Quinoxaline Copolymer. Advanced Energy Materials, 2013, 3, 806-814.	19.5	86
29	Glass Forming Acceptor Alloys for Highly Efficient and Thermally Stable Ternary Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1702741.	19.5	86
30	The Formation of Nematic Liquid Crystal Phases by Hen Lysozyme Amyloid Fibrils. Journal of the American Chemical Society, 2006, 128, 14740-14741.	13.7	83
31	Diffusion-Limited Crystallization: A Rationale for the Thermal Stability of Non-Fullerene Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 21766-21774.	8.0	82
32	Machine-Washable Conductive Silk Yarns with a Composite Coating of Ag Nanowires and PEDOT:PSS. ACS Applied Materials & Interfaces, 2020, 12, 27537-27544.	8.0	81
33	Phase behaviour of liquid-crystalline polymer/fullerene organic photovoltaic blends: thermal stability and miscibility. Journal of Materials Chemistry, 2011, 21, 10676.	6.7	80
34	Glass Transition Temperature of Conjugated Polymers by Oscillatory Shear Rheometry. Macromolecules, 2017, 50, 5146-5154.	4.8	78
35	Simultaneous stress and birefringence measurements during uniaxial elongation of polystyrene melts with narrow molecular weight distribution. Rheologica Acta, 2005, 45, 83-91.	2.4	77
36	Organic Semiconductor:Insulator Polymer Ternary Blends for Photovoltaics. Advanced Materials, 2011, 23, 4093-4097.	21.0	77

Christian Müller

#	Article	IF	CITATIONS
37	New quinoxaline and pyridopyrazine-based polymers for solution-processable photovoltaics. Solar Energy Materials and Solar Cells, 2012, 105, 280-286.	6.2	75
38	Nano-pathways: Bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics. Nano Energy, 2016, 19, 495-510.	16.0	75
39	All-Organic Textile Thermoelectrics with Carbon-Nanotube-Coated n-Type Yarns. ACS Applied Energy Materials, 2018, 1, 2934-2941.	5.1	75
40	Influence of crystallinity on the thermoelectric power factor of P3HT vapour-doped with F4TCNQ. RSC Advances, 2018, 8, 1593-1599.	3.6	74
41	The role of alkane dithiols in controlling polymer crystallization in small band gap polymer:Fullerene solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 717-724.	2.1	73
42	One‣tep Macroscopic Alignment of Conjugated Polymer Systems by Epitaxial Crystallization during Spin oating. Advanced Functional Materials, 2013, 23, 2368-2377.	14.9	73
43	A New Tetracyclic Lactam Building Block for Thick, Broad-Bandgap Photovoltaics. Journal of the American Chemical Society, 2014, 136, 11578-11581.	13.7	73
44	A Solutionâ€Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics. Advanced Science, 2017, 4, 1600203.	11.2	72
45	Highly Insulating Polyethylene Blends for High-Voltage Direct-Current Power Cables. ACS Macro Letters, 2017, 6, 78-82.	4.8	68
46	Robust PEDOT:PSS Wet‧pun Fibers for Thermoelectric Textiles. Macromolecular Materials and Engineering, 2020, 305, 1900749.	3.6	68
47	Fullerene Nucleating Agents: A Route Towards Thermally Stable Photovoltaic Blends. Advanced Energy Materials, 2014, 4, 1301437.	19.5	65
48	Uniform doping of graphene close to the Dirac point by polymer-assisted assembly of molecular dopants. Nature Communications, 2018, 9, 3956.	12.8	61
49	Nucleation-limited fullerene crystallisation in a polymer–fullerene bulk-heterojunction blend. Journal of Materials Chemistry A, 2013, 1, 7174.	10.3	60
50	Tailored sideâ€chain architecture of benzil voltage stabilizers for enhanced dielectric strength of crossâ€linked polyethylene. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1047-1054.	2.1	60
51	Mobility and fill factor correlation in geminate recombination limited solar cells. Journal of Applied Physics, 2011, 110, .	2.5	58
52	Enhanced Charge-Carrier Mobility in High-Pressure-Crystallized Poly(3-hexylthiophene). Macromolecules, 2011, 44, 1221-1225.	4.8	56
53	Rollâ€ŧoâ€Roll Dyed Conducting Silk Yarns: A Versatile Material for Eâ€Textile Devices. Advanced Materials Technologies, 2018, 3, 1800251.	5.8	56
54	Enhanced Thermoelectric Power Factor of Tensile Drawn Poly(3-hexylthiophene). ACS Macro Letters, 2019, 8, 70-76.	4.8	56

Christian Müller

#	Article	IF	CITATIONS
55	Comparative Study of the Nâ€Type Doping Efficiency in Solutionâ€processed Fullerenes and Fullerene Derivatives. Advanced Functional Materials, 2014, 24, 7116-7124.	14.9	55
56	On the Effect of Prevalent Carbazole Homocoupling Defects on the Photovoltaic Performance of PCDTBT:PC ₇₁ BM Solar Cells. Advanced Energy Materials, 2016, 6, 1601232.	19.5	52
57	High electron affinity: a guiding criterion for voltage stabilizer design. Journal of Materials Chemistry A, 2015, 3, 7273-7286.	10.3	51
58	Lateral Phase Separation Gradients in Spinâ€Coated Thin Films of Highâ€Performance Polymer:Fullerene Photovoltaic Blends. Advanced Functional Materials, 2011, 21, 3169-3175.	14.9	49
59	Highâ€Entropy Mixtures of Pristine Fullerenes for Solutionâ€Processed Transistors and Solar Cells. Advanced Materials, 2015, 27, 7325-7331.	21.0	49
60	Sub-glass transition annealing enhances polymer solar cell performance. Journal of Materials Chemistry A, 2014, 2, 6146-6152.	10.3	48
61	Fullerene mixtures enhance the thermal stability of a non-crystalline polymer solar cell blend. Applied Physics Letters, 2014, 104, .	3.3	47
62	Chemical Doping of Conjugated Polymers with the Strong Oxidant Magic Blue. Advanced Electronic Materials, 2020, 6, 2000249.	5.1	46
63	Solar Energy Storage by Molecular Norbornadiene–Quadricyclane Photoswitches: Polymer Film Devices. Advanced Science, 2019, 6, 1900367.	11.2	45
64	UV-to-IR Absorption of Molecularly p-Doped Polythiophenes with Alkyl and Oligoether Side Chains: Experiment and Interpretation Based on Density Functional Theory. Journal of Physical Chemistry B, 2020, 124, 11280-11293.	2.6	45
65	Highly stable doping of a polar polythiophene through co-processing with sulfonic acids and bistriflimide. Journal of Materials Chemistry C, 2018, 6, 6905-6910.	5.5	44
66	Asymmetric Aqueous Supercapacitor Based on p- and n-Type Conducting Polymers. ACS Applied Energy Materials, 2019, 2, 5350-5355.	5.1	44
67	Suppressing Coâ€Crystallization of Halogenated Nonâ€Fullerene Acceptors for Thermally Stable Ternary Solar Cells. Advanced Functional Materials, 2020, 30, 2005462.	14.9	44
68	Isothermal Crystallization Kinetics and Time–Temperature–Transformation of the Conjugated Polymer: Poly(3-(2′-ethyl)hexylthiophene). Chemistry of Materials, 2017, 29, 5654-5662.	6.7	41
69	Sequential Doping of Ladder-Type Conjugated Polymers for Thermally Stable n-Type Organic Conductors. ACS Applied Materials & Interfaces, 2020, 12, 53003-53011.	8.0	41
70	Bulk Doping of Millimeterâ€Thick Conjugated Polymer Foams for Plastic Thermoelectrics. Advanced Functional Materials, 2017, 27, 1704183.	14.9	40
71	Green Conducting Cellulose Yarns for Machine-Sewn Electronic Textiles. ACS Applied Materials & Interfaces, 2020, 12, 56403-56412.	8.0	39
72	High Thermoelectric Power Factor of Poly(3-hexylthiophene) through In-Plane Alignment and Doping with a Molybdenum Dithiolene Complex. Macromolecules, 2020, 53, 6314-6321.	4.8	39

Christian MÃ¹/4ller

#	Article	IF	CITATIONS
73	Lowâ€Power/Highâ€Gain Flexible Complementary Circuits Based on Printed Organic Electrochemical Transistors. Advanced Electronic Materials, 2022, 8, .	5.1	39
74	Synthesis, thin-film morphology, and comparative study of bulk and bilayer heterojunction organic photovoltaic devices using soluble diketopyrrolopyrrole molecules. Energy and Environmental Science, 2011, 4, 3617.	30.8	37
75	All-Polymer Conducting Fibers and 3D Prints via Melt Processing and Templated Polymerization. ACS Applied Materials & amp; Interfaces, 2020, 12, 8713-8721.	8.0	37
76	Crystalline–crystalline poly(3-hexylthiophene)–polyethylene diblock copolymers: Solidification from the melt. Polymer, 2008, 49, 3973-3978.	3.8	34
77	Recyclable Polyethylene Insulation via Reactive Compounding with a Maleic Anhydride-Grafted Polypropylene. ACS Applied Polymer Materials, 2020, 2, 2389-2396.	4.4	34
78	Polymorphism in Nonâ€Fullerene Acceptors Based on Indacenodithienothiophene. Advanced Functional Materials, 2021, 31, 2103784.	14.9	33
79	Conducting materials as building blocks for electronic textiles. MRS Bulletin, 2021, 46, 491-501.	3.5	33
80	Modulating molecular aggregation by facile heteroatom substitution of diketopyrrolopyrrole based small molecules for efficient organic solar cells. Journal of Materials Chemistry A, 2015, 3, 24349-24357.	10.3	31
81	Plasmonic Nanospectroscopy for Thermal Analysis of Organic Semiconductor Thin Films. Analytical Chemistry, 2017, 89, 2575-2582.	6.5	29
82	α-Quaterthiophene–polyethylene blends: Phase behaviour and electronic properties. Synthetic Metals, 2007, 157, 827-833.	3.9	28
83	Repurposing Poly(3â€hexylthiophene) as a Conductivityâ€Reducing Additive for Polyethyleneâ€Based Highâ€Voltage Insulation. Advanced Materials, 2021, 33, e2100714.	21.0	28
84	Two-in-one: cathode modification and improved solar cell blend stability through addition of modified fullerenes. Journal of Materials Chemistry A, 2016, 4, 2663-2669.	10.3	27
85	Determination of Thermal Transition Depth Profiles in Polymer Semiconductor Films with Ellipsometry. Macromolecules, 2013, 46, 7325-7331.	4.8	26
86	Byproduct-free curing of a highly insulating polyethylene copolymer blend: an alternative to peroxide crosslinking. Journal of Materials Chemistry C, 2018, 6, 11292-11302.	5.5	26
87	Neat C ₆₀ :C ₇₀ buckminsterfullerene mixtures enhance polymer solar cell performance. Journal of Materials Chemistry A, 2014, 2, 14354-14359.	10.3	25
88	Stability study of quinoxaline and pyrido pyrazine based co-polymers for solar cell applications. Solar Energy Materials and Solar Cells, 2014, 130, 138-143.	6.2	24
89	Additiveâ€like amounts of HDPE prevent creep of molten LDPE: Phaseâ€behavior and thermoâ€mechanical properties of a meltâ€miscible blend. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 146-156.	2.1	24
90	Local Chain Alignment via Nematic Ordering Reduces Chain Entanglement in Conjugated Polymers. Macromolecules, 2018, 51, 10271-10284.	4.8	24

CHRISTIAN MÃ¹/4LLER

#	Article	IF	CITATIONS
91	Nanocomposites and polyethylene blends: two potentially synergistic strategies for HVDC insulation materials with ultra-low electrical conductivity. Composites Part B: Engineering, 2021, 204, 108498.	12.0	24
92	On the complex refractive index of polymer:fullerene photovoltaic blends. Thin Solid Films, 2014, 571, 371-376.	1.8	23
93	Melt-Mixed 3D Hierarchical Graphene/Polypropylene Nanocomposites with Low Electrical Percolation Threshold. Nanomaterials, 2019, 9, 1766.	4.1	23
94	Crosslinking of an ethylene-glycidyl methacrylate copolymer with amine click chemistry. Polymer, 2017, 111, 27-35.	3.8	21
95	Functionalisation of recombinant spider silk with conjugated polyelectrolytes. Journal of Materials Chemistry, 2011, 21, 2909.	6.7	20
96	Molecular Weight Determination by Counting Molecules. Journal of Physical Chemistry Letters, 2015, 6, 923-927.	4.6	20
97	From Single Molecules to Thin Film Electronics, Nanofibers, eâ€Textiles and Power Cables: Bridging Length Scales with Organic Semiconductors. Advanced Materials, 2019, 31, e1807286.	21.0	20
98	Bulk-Processed Pd Nanocube–Poly(methyl methacrylate) Nanocomposites as Plasmonic Plastics for Hydrogen Sensing. ACS Applied Nano Materials, 2020, 3, 8438-8445.	5.0	20
99	Electrical Characterization of a New Crosslinked Copolymer Blend for DC Cable Insulation. Energies, 2020, 13, 1434.	3.1	20
100	One‣tep Blade oated Highly Efficient Nonfullerene Organic Solar Cells with a Selfâ€Assembled Interfacial Layer Enabled by Solvent Vapor Annealing. Solar Rrl, 2019, 3, 1900179.	5.8	19
101	Charge transport in doped conjugated polymers for organic thermoelectrics. Chemical Physics Reviews, 2022, 3, .	5.7	19
102	Dielectric strength of γ-radiation cross-linked, high vinyl-content polyethylene. European Polymer Journal, 2015, 64, 101-107.	5.4	18
103	Toughening of a Soft Polar Polythiophene through Copolymerization with Hard Urethane Segments. Advanced Science, 2021, 8, 2002778.	11.2	18
104	A fullerene alloy based photovoltaic blend with a glass transition temperature above 200 °C. Journal of Materials Chemistry A, 2017, 5, 4156-4162.	10.3	17
105	Impact of P3HT materials properties and layer architecture on OPV device stability. Solar Energy Materials and Solar Cells, 2019, 202, 110151.	6.2	17
106	Highly Permeable Fluorinated Polymer Nanocomposites for Plasmonic Hydrogen Sensing. ACS Applied Materials & Interfaces, 2021, 13, 21724-21732.	8.0	17
107	Tuning of the elastic modulus of a soft polythiophene through molecular doping. Materials Horizons, 2022, 9, 433-443.	12.2	17
108	Vapour printing: patterning of the optical and electrical properties of organic semiconductors in one simple step. Journal of Materials Chemistry, 2012, 22, 4519.	6.7	16

Christian MÃ¹/4ller

#	Article	IF	CITATIONS
109	Facile Monitoring of Fullerene Crystallization in Polymer Solar Cell Blends by UV–vis Spectroscopy. Macromolecular Chemistry and Physics, 2014, 215, 530-535.	2.2	16
110	A Record Chromophore Density in Highâ€Entropy Liquids of Two Lowâ€Melting Perylenes: A New Strategy for Liquid Chromophores. Advanced Science, 2019, 6, 1801650.	11.2	16
111	Click chemistryâ€ŧype crosslinking of a lowâ€conductivity polyethylene copolymer ternary blend for power cable insulation. Polymer International, 2020, 69, 404-412.	3.1	16
112	Cellulose nanofibril-reinforced composites using aqueous dispersed ethylene-acrylic acid copolymer. Cellulose, 2018, 25, 4577-4589.	4.9	15
113	Thermally Activated in Situ Doping Enables Solid-State Processing of Conducting Polymers. Chemistry of Materials, 2019, 31, 2770-2777.	6.7	15
114	Mapping fullerene crystallization in a photovoltaic blend: an electron tomography study. Nanoscale, 2015, 7, 8451-8456.	5.6	14
115	Synergistic Effect of Multiâ€Walled Carbon Nanotubes and Ladderâ€Type Conjugated Polymers on the Performance of Nâ€Type Organic Electrochemical Transistors. Advanced Functional Materials, 2022, 32, 2106447.	14.9	14
116	Ground State Host–Guest Interactions upon Effective Dispersion of Regioregular Poly(3-hexylthiophene) in Poly(9,9-dioctylfluorene- <i>alt</i> -benzothiadiazole). Macromolecules, 2015, 48, 8765-8772.	4.8	13
117	Controlled Molecular Orientation of Inkjet Printed Semiconducting Polymer Fibers by Crystallization Templating. Chemistry of Materials, 2017, 29, 10150-10158.	6.7	13
118	Dynamic Nanocellulose Networks for Thermoset-like yet Recyclable Plastics with a High Melt Stiffness and Creep Resistance. Biomacromolecules, 2019, 20, 3924-3932.	5.4	13
119	A Combined Theoretical and Experimental Study of the Polymer Matrix-Mediated Stress Transfer in a Cellulose Nanocomposite. Macromolecules, 2021, 54, 3507-3516.	4.8	13
120	Orange is the new white: rapid curing of an ethylene-glycidyl methacrylate copolymer with a Ti-bisphenolate type catalyst. Polymer Chemistry, 2018, 9, 1710-1718.	3.9	11
121	Conjugated Polymer Mesocrystals with Structural and Optoelectronic Coherence and Anisotropy in Three Dimensions. Advanced Materials, 2022, 34, e2103002.	21.0	11
122	Optical properties of hybrid titanium chevron sculptured thin films coated with a semiconducting polymer. Thin Solid Films, 2011, 519, 2645-2649.	1.8	10
123	Doping and processing of organic semiconductors for plastic thermoelectrics. , 2019, , 429-449.		10
124	Highâ€ŧemperature creep resistant ternary blends based on polyethylene and polypropylene for thermoplastic power cable insulation. Journal of Polymer Science, 2021, 59, 1084-1094.	3.8	10
125	Delocalization Enhances Conductivity at High Doping Concentrations. Advanced Functional Materials, 0, , 2112262.	14.9	10
126	Highly insulating thermoplastic blends comprising a styrenic copolymer for direct urrent power cable insulation. High Voltage, 2022, 7, 251-259.	4.7	10

CHRISTIAN MÃ¹/4LLER

#	Article	IF	CITATIONS
127	Micro X-ray diffraction mapping of a fluorene copolymer fibre. Polymer, 2013, 54, 805-811.	3.8	9
128	Two-photon absorption of polyfluorene aggregates stabilized by insulin amyloid fibrils. RSC Advances, 2015, 5, 49363-49368.	3.6	9
129	Highly structured graphene polyethylene nanocomposites. AIP Conference Proceedings, 2019, , .	0.4	9
130	Highly Reliable Yarn-Type Supercapacitor Using Conductive Silk Yarns with Multilayered Active Materials. Journal of Natural Fibers, 2022, 19, 835-846.	3.1	9
131	Sequential doping of solid chunks of a conjugated polymer for body-heat-powered thermoelectric modules. Applied Physics Letters, 2021, 119, .	3.3	9
132	The Influence of Alkoxy Substitutions on the Properties of Diketopyrrolopyrrole-Phenyl Copolymers for Solar Cells. Materials, 2013, 6, 3022-3034.	2.9	8
133	Lyotropic phase behaviour of dilute, aqueous hen lysozyme amyloid fibril dispersions. Journal of Materials Science, 2011, 46, 3687-3692.	3.7	7
134	Vitrification of octonary perylene mixtures with ultralow fragility. Science Advances, 2021, 7, .	10.3	7
135	Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cells. Polymer Chemistry, 2015, 6, 7402-7409.	3.9	6
136	Invariant dielectric strength upon addition of low amounts of HDPE to LDPE. , 2016, , .		6
137	Influence of Molecular Weight on the Creep Resistance of Almost Molten Polyethylene Blends. Macromolecular Chemistry and Physics, 2018, 219, 1700072.	2.2	6
138	Highly insulating thermoplastic nanocomposites based on a polyolefin ternary blend for high-voltage direct current power cables. Nanoscale, 2022, 14, 7927-7933.	5.6	6
139	MRS Fall 2017 Symposium: Organic Semiconductors—Surface, Interface, Bulk Doping, and Charge Transport. Chemistry of Materials, 2018, 30, 3151-3154.	6.7	5
140	Influence of synthetic pathway, molecular weight and side chains on properties of indacenodithiophene-benzothiadiazole copolymers made by direct arylation polycondensation. Journal of Materials Chemistry C, 2021, 9, 4597-4606.	5.5	5
141	Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope. Ultramicroscopy, 2017, 176, 23-30.	1.9	4
142	Double Doping of a Low-Ionization-Energy Polythiophene with a Molybdenum Dithiolene Complex. Chemistry of Materials, 0, , .	6.7	4
143	New Materials for Organic Electronics: Improved Properties to Tackle Application Challenges. Advanced Electronic Materials, 2018, 4, 1800621.	5.1	3
144	Synergistic reinforcement of a reversible Diels–Alder type network with nanocellulose. Materials Advances, 2021, 2, 5171-5180.	5.4	3

Christian Müller

#	Article	IF	CITATIONS
145	Electrically Conducting Elastomeric Fibers with High Stretchability and Stability. Small, 2022, 18, e2102813.	10.0	3
146	Invariant electrical conductivity upon thermal ageing of a crosslinked copolymer blend for high voltage insulation. Materials Advances, 2022, 3, 4718-4723.	5.4	3
147	Patterned optical anisotropy in woven conjugated polymer systems. Applied Physics Letters, 2012, 101, 171907.	3.3	2
148	Isothermal crystallization and time-temperature-transformation diagram of the organic semiconductor 5,11-bis(triethylsilylethynyl)anthradithiophene. Journal of Materials Chemistry C, 2021, 9, 11745-11752.	5.5	2
149	Organic and hybrid thermoelectrics. Applied Physics Letters, 2021, 119, 260401.	3.3	2
150	Organogels from Diketopyrrolopyrrole Copolymer Ionene/Polythiophene Blends Exhibit Ground-State Single Electron Transfer in the Solid State. Macromolecules, 2022, 55, 4979-4994.	4.8	2
151	Nanostructures: Fullerene Nucleating Agents: A Route Towards Thermally Stable Photovoltaic Blends (Adv. Energy Mater. 9/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	19.5	0
152	Electron Microscopy of Organic Solar Cells Thermally Stabilized with Fullerene Nucleating Agents. Microscopy and Microanalysis, 2014, 20, 398-399.	0.4	0
153	Organic Solar Cells: On the Effect of Prevalent Carbazole Homocoupling Defects on the Photovoltaic Performance of PCDTBT:PC71 BM Solar Cells (Adv. Energy Mater. 21/2016). Advanced Energy Materials, 2016, 6, .	19.5	0
154	Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope. Ultramicroscopy, 2017, 173, 16-23.	1.9	0
155	Determination of oxidation level of molecularly doped conjugated polymers with optical spectroscopy. , 0, , .		Ο