Chui-Wei Bong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1369692/publications.pdf

Version: 2024-02-01

		623734	677142
32	508	14	22
papers	citations	h-index	g-index
33	33	33	642
33	33	33	042
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Complete degradation of dimethyl phthalate by biochemical cooperation of the Bacillus thuringiensis strain isolated from cotton field soil. RSC Advances, 2014, 4, 55960-55966.	3 . 6	60
2	Assessment of heavy metal pollution in surficial sediments from a tropical river-estuary-shelf system: A case study of Kelantan River, Malaysia. Marine Pollution Bulletin, 2017, 125, 492-500.	5.0	51
3	Temporal Variation of Bacterial Respiration and Growth Efficiency in Tropical Coastal Waters. Applied and Environmental Microbiology, 2009, 75, 7594-7601.	3.1	42
4	Bacterial abundance and production, and their relation to primary production in tropical coastal waters of Peninsular Malaysia. Marine and Freshwater Research, 2008, 59, 10.	1.3	35
5	Isolation and Characterization of Aquatic-Borne Klebsiella pneumoniae from Tropical Estuaries in Malaysia. International Journal of Environmental Research and Public Health, 2016, 13, 426.	2.6	35
6	Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia. Frontiers in Microbiology, 2015, 6, 977.	3 . 5	29
7	Anthropogenic impacts on sulfonamide residues and sulfonamide resistant bacteria and genes in Larut and Sangga Besar River, Perak. Science of the Total Environment, 2019, 688, 1335-1347.	8.0	23
8	Mangrove Oyster (<i>Crassostrea belcheri)</i> as a Biomonitor Species for Bioavailability of Polycyclic Aromatic Hydrocarbons (PAHs) from Sediment of the West Coast of Peninsular Malaysia. Polycyclic Aromatic Compounds, 2019, 39, 470-485.	2.6	23
9	Aliphatic hydrocarbons and triterpane biomarkers in mangrove oyster (Crassostrea belcheri) from the west coast of Peninsular Malaysia. Marine Pollution Bulletin, 2017, 124, 33-42.	5.0	22
10	Distributions of particulate and dissolved phosphorus in aquatic habitats of Peninsular Malaysia. Marine Pollution Bulletin, 2018, 128, 415-427.	5.0	21
11	Environmental control of Vibrio spp. abundance and community structure in tropical waters. FEMS Microbiology Ecology, 2019, 95, .	2.7	19
12	Use of sterols and linear alkylbenzenes as molecular markers of sewage pollution in Southeast Asia. Environmental Science and Pollution Research, 2019, 26, 31555-31580.	5 . 3	18
13	Seasonal variability of anthropogenic indices of PAHs in sediment from the Kuala Selangor River, west coast Peninsular Malaysia. Environmental Geochemistry and Health, 2018, 40, 2551-2572.	3.4	16
14	Distribution of black carbon and PAHs in sediments of Peninsular Malaysia. Marine Pollution Bulletin, 2021, 172, 112871.	5.0	15
15	The contribution of heterotrophic nanoflagellate grazing towards bacterial mortality in tropical waters: comparing estuaries and coastal ecosystems. Marine and Freshwater Research, 2011, 62, 414.	1.3	13
16	Investigating the decay rates of Escherichia coli relative to Vibrio parahemolyticus and Salmonella Typhi in tropical coastal waters. Water Research, 2011, 45, 1561-1570.	11.3	12
17	Long-term comparison of dissolved nitrogen species in tropical estuarine and coastal water systems. Estuarine, Coastal and Shelf Science, 2019, 222, 103-111.	2.1	12
18	The relative abundance and seasonal distribution correspond with the sources of polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of Chenab River, Pakistan. Environmental Monitoring and Assessment, 2016, 188, 378.	2.7	8

#	Article	IF	CITATIONS
19	Prevalence and characterization of Escherichia coli in the Kelantan River and its adjacent coastal waters. Water Science and Technology: Water Supply, 2020, 20, 930-942.	2.1	8
20	Relative Contribution of Viral Lysis and Grazing to Bacterial Mortality in Tropical Coastal Waters of Peninsular Malaysia. Bulletin of Marine Science, 2012, 88, 1-14.	0.8	6
21	Prevalence and Diversity of Antibiotic Resistant Escherichia coli From Anthropogenic-Impacted Larut River. Frontiers in Public Health, 2022, 10, 794513.	2.7	6
22	Methodological Considerations and Comparisons of Measurement Results for Extracellular Proteolytic Enzyme Activities in Seawater. Frontiers in Microbiology, 2017, 8, 1952.	3.5	5
23	Carbon Flux Through Bacteria in a Eutrophic Tropical Environment: Port Klang Waters. , 2006, , 329-345.		5
24	The dynamics of attached and free-living bacterial population in tropical coastal waters. Marine and Freshwater Research, 2015, 66, 701.	1.3	4
25	Examination of barnacles' potential to be used as bioindicators of persistent organic pollutants in coastal ecosystem: A Malaysia case study. Chemosphere, 2021, 263, 128272.	8.2	4
26	Use of molecular markers and compound-specific isotopic signatures to trace sources of black carbon in surface sediments of Peninsular Malaysia: Impacts of anthropogenic activities. Marine Chemistry, 2021, 237, 104032.	2.3	4
27	The impact of eutrophication towards selected bacterial process rates in tropical coastal waters. Marine Pollution Bulletin, 2021, 169, 112524.	5.0	3
28	The role of microzooplankton grazing in the microbial food web of a tropical mangrove estuary. Estuarine, Coastal and Shelf Science, 2022, 275, 107969.	2.1	3
29	Influence of elevated river flow on hypoxia occurrence, nutrient concentration and microbial dynamics in a tropical estuary. Environmental Monitoring and Assessment, 2020, 192, 660.	2.7	2
30	Investigating factors driving phytoplankton growth and grazing loss rates in waters around Peninsular Malaysia. Journal of Oceanology and Limnology, 2021, 39, 148-159.	1.3	2
31	Microbial Community Structure and Bacterial Lineages Associated with Sulfonamides Resistance in Anthropogenic Impacted Larut River. Water (Switzerland), 2022, 14, 1018.	2.7	2
32	Archaeal community structure in the tropical coastal waters of Peninsular Malaysia. Annals of Microbiology, 2015, 65, 2029-2039.	2.6	0