Gregory F Nemet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1369680/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters, 2018, 13, 063002.	5.2	823
2	The underestimated potential of solar energy to mitigate climate change. Nature Energy, 2017, 2, .	39.5	563
3	Beyond the learning curve: factors influencing cost reductions in photovoltaics. Energy Policy, 2006, 34, 3218-3232.	8.8	542
4	Demand-pull, technology-push, and government-led incentives for non-incremental technical change. Research Policy, 2009, 38, 700-709.	6.4	529
5	Negative emissions—Part 1: Research landscape and synthesis. Environmental Research Letters, 2018, 13, 063001.	5.2	498
6	U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion. Energy Policy, 2007, 35, 746-755.	8.8	290
7	Negative emissions—Part 3: Innovation and upscaling. Environmental Research Letters, 2018, 13, 063003.	5.2	224
8	The Energy Technology Innovation System. Annual Review of Environment and Resources, 2012, 37, 137-162.	13.4	223
9	Apples, oranges, and consistent comparisons of the temporal dynamics of energy transitions. Energy Research and Social Science, 2016, 22, 18-25.	6.4	146
10	Marginalization of end-use technologies in energy innovation for climate protection. Nature Climate Change, 2012, 2, 780-788.	18.8	137
11	Do important inventions benefit from knowledge originating in other technological domains?. Research Policy, 2012, 41, 190-200.	6.4	109
12	Inter-technology knowledge spillovers for energy technologies. Energy Economics, 2012, 34, 1259-1270.	12.1	104
13	Interim monitoring of cost dynamics for publicly supported energy technologies. Energy Policy, 2009, 37, 825-835.	8.8	99
14	Demand Subsidies Versus R&D: Comparing the Uncertain Impacts of Policy on a Pre-commercial Low-carbon Energy Technology. Energy Journal, 2009, 30, 49-80.	1.7	89
15	Negative emissions and international climate goals—learning from and about mitigation scenarios. Climatic Change, 2019, 157, 189-219.	3.6	74
16	Addressing policy credibility problems for low-carbon investment. Global Environmental Change, 2017, 42, 47-57.	7.8	65
17	What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects. Energy Policy, 2021, 158, 112546.	8.8	64
18	The valley of death, the technology pork barrel, and public support for large demonstration projects. Energy Policy, 2018, 119, 154-167.	8.8	59

GREGORY F NEMET

#	Article	IF	CITATIONS
19	Net Radiative Forcing from Widespread Deployment of Photovoltaics. Environmental Science & Technology, 2009, 43, 2173-2178.	10.0	52
20	Deconstructing Solar Photovoltaic Pricing: The Role of Market Structure, Technology, and Policy. Energy Journal, 2016, 37, 231-250.	1.7	44
21	Coal transitions—part 1: a systematic map and review of case study learnings from regional, national, and local coal phase-out experiences. Environmental Research Letters, 2021, 16, 113003.	5.2	40
22	Subsidies for New Technologies and Knowledge Spillovers from Learning by Doing. Journal of Policy Analysis and Management, 2012, 31, 601-622.	1.4	37
23	Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology. Energy Policy, 2013, 52, 819-831.	8.8	33
24	Robust incentives and the design of a climate change governance regime. Energy Policy, 2010, 38, 7216-7225.	8.8	31
25	Policies for the Energy Technology Innovation System (ETIS). , 0, , 1665-1744.		29
26	The effects of expert selection, elicitation design, and R&D assumptions on experts' estimates of the future costs of photovoltaics. Energy Policy, 2015, 80, 233-243.	8.8	27
27	Addressing the soft cost challenge in U.S. small-scale solar PV system pricing. Energy Policy, 2019, 134, 110956.	8.8	24
28	Policy, Financing and Implementation. , 2011, , 865-950.		23
29	Quantifying the Effects of Expert Selection and Elicitation Design on Experts' Confidence in Their Judgments About Future Energy Technologies. Risk Analysis, 2017, 37, 315-330.	2.7	22
30	Knowledge spillovers between PV installers can reduce the cost of installing solar PV. Energy Policy, 2020, 144, 111600.	8.8	22
31	Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios. Energy, 2013, 56, 218-228.	8.8	20
32	Willingness to Pay for a Climate Backstop: Liquid Fuel Producers and Direct CO ₂ Air Capture. Energy Journal, 2012, 33, 53-82.	1.7	20
33	Countercyclical energy and climate policy for the U.S Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 5-12.	8.1	19
34	Cost containment in climate policy and incentives for technology development. Climatic Change, 2010, 103, 423-443.	3.6	16
35	Characterizing the effects of policy instruments on the future costs of carbon capture for coal power plants. Climatic Change, 2015, 133, 155-168.	3.6	14
36	Assessing learning in low carbon technologies: Toward a more comprehensive approach. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, e730.	8.1	13

GREGORY F NEMET

#	Article	IF	CITATIONS
37	Technology-Led Climate Policy. , 2010, , 292-359.		12
38	Evidence map: topics, trends, and policy in the energy transitions literature. Environmental Research Letters, 2020, 15, 123003.	5.2	11
39	Accelerating the low-carbon transition will require policy to enhance local learning. Energy Policy, 2022, 167, 113043.	8.8	11
40	Sources and Consequences of Knowledge Depreciation. , 2013, , 133-145.		10
41	Four decades of multiyear targets in energy policy: aspirations or credible commitments?. Wiley Interdisciplinary Reviews: Energy and Environment, 2014, 3, 522-533.	4.1	10
42	PV Learning Curves and Cost Dynamics. Semiconductors and Semimetals, 2012, , 85-142.	0.7	8
43	The Impacts of Electric Vehicle Growth on Wholesale Electricity Prices in Wisconsin. World Electric Vehicle Journal, 2020, 11, 32.	3.0	6
44	Innovation in low-energy demand and its implications for policy ., 2022, 1, .		6
45	The Valley of Death, the Technology Pork Barrel, and Public Support for Large Demonstration Projects. SSRN Electronic Journal, 0, , .	0.4	5
46	Do Important Inventions Benefit from Knowledge Originating in Other Technological Domains?. SSRN Electronic Journal, 2011, , .	0.4	4
47	Technological Improvements in Solar Thermal Electricity in the United States and the Role of Public Policy. , 2013, , 165-177.		4
48	Demand Subsidies vs. R&D: Comparing the Uncertain Impacts of Policy on a Pre-Commercial Low-Carbon Energy Technology. SSRN Electronic Journal, 0, , .	0.4	3
49	Improving the crystal ball. Nature Energy, 2021, 6, 860-861.	39.5	3
50	The roles of learning mechanisms in services: Evidence from US residential solar installations. Energy Policy, 2022, 167, 113003.	8.8	3
51	Energy Myth Eleven $\hat{a} \in \hat{C}$ Energy R&D Investment Takes Decades to Reach the Market. , 2007, , 289-309.		2
52	Modeling the Costs of Carbon Capture. Energy Systems, 2012, , 349-372.	0.5	2
53	Interpreting Interim Deviations from Cost Projections for Publicly Supported Energy Technologies. SSRN Electronic Journal, 0, , .	0.4	2
54	The Effects of Expert Selection, Elicitation Design, and R&D Assumptions on Expertss Estimates of the Future Costs of Photovoltaics. SSRN Electronic Journal, 0, , .	0.4	2

#	Article	IF	CITATIONS
55	Solar Photovoltaics: Multiple Drivers of Technological Improvement. , 0, , 206-218.		1
56	Robust Incentives and the Design of a Climate Change Governance Regime. SSRN Electronic Journal, 0, , \cdot	0.4	1
57	Willingness to Pay for a Climate Backstop: Liquid Fuel Producers and Direct COâ,, Air Capture. SSRN Electronic Journal, 0, , .	0.4	1
58	Historical and Future Cost Dynamics of Photovoltaic Technology. , 2022, , 50-81.		1
59	Solar Water Heater Innovation in the United States, China, and Europe. , 0, , 105-117.		0
60	Quantifying the Effects of Expert Selection and Elicitation Design on Expertss Confidence in Their Judgments About Future Energy Technologies. SSRN Electronic Journal, 0, , .	0.4	0